Whistler instability in non-Maxwellian plasmas

被引:7
|
作者
Zaheer, S. [1 ]
Murtaza, G. [2 ]
机构
[1] Forman Christian Coll Univ, Dept Phys, Lahore, Pakistan
[2] G C Univ, Dept Phys, Lahore, Pakistan
关键词
WEIBEL INSTABILITY; 3-WAVE INTERACTION; GENERATION; TRANSVERSE; WAVES; SHOCK;
D O I
10.1088/0031-8949/81/03/035501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linear analysis is carried out for whistler instability in a magnetized plasma, with the propagation direction parallel to the background magnetic field. Detailed properties of this instability are investigated for the non-Maxwellian distribution functions having high energy tails or broad shoulders as it occurs in many space plasmas environments. In particular, analytical expressions of the dielectric constant are derived for the Maxwellian, kappa (kappa) and (r, q) velocity distributions. In general, when (i) kappa -> infinity and (ii) r = 0, q -> infinity, the results approach the standard Maxwellian situation. The growth rate is suppressed for small values of kappa and q (keeping r fixed), whereas for negative values of r (keeping q fixed), instability transforms into damping. The graphic representation shows that while the L-wave has a resonance at omega = omega(L), the R-wave has a cutoff point at Omega and omega(R). Thus while the L-wave shows a behavior similar to the ordinary L-wave, the R-wave behavior is drastically changed. The whistler mode region (omega < Omega) also exhibits a changed character and thus may have important implications for the study of ionospheric phenomena.
引用
收藏
页数:6
相关论文
共 50 条
  • [2] Linear theory of the mirror instability in non-Maxwellian space plasmas
    Pokhotelov, OA
    Treumann, RA
    Sagdeev, RZ
    Balikhin, MA
    Onishchenko, OG
    Pavlenko, VP
    Sandberg, I
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A10)
  • [3] Modulational instability and associated breathers in collisional electronegative non-Maxwellian plasmas
    Alhejaili, Weaam
    Mouhammadoul, B. B.
    Alim
    Tiofack, C. G. L.
    Mohamadou, A.
    El-Tantawy, S. A.
    [J]. PHYSICS OF FLUIDS, 2023, 35 (10)
  • [4] Debye length in non-Maxwellian plasmas
    Rubab, N.
    Murtaza, G.
    [J]. PHYSICA SCRIPTA, 2006, 74 (02) : 145 - 148
  • [5] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    SINGH, N
    [J]. RADIO SCIENCE, 1980, 15 (04) : 881 - 889
  • [6] Ignition threshold for non-Maxwellian plasmas
    Hay, Michael J.
    Fisch, Nathaniel J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (11)
  • [7] ATOMIC PHYSICS AND NON-MAXWELLIAN PLASMAS
    LAMOUREUX, M
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 31, 1993, 31 : 233 - 295
  • [8] Anomalous resistivity in non-Maxwellian plasmas
    Petkaki, P
    Watt, CEJ
    Horne, RB
    Freeman, MP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A12)
  • [9] PROBE DIAGNOSTICS OF NON-MAXWELLIAN PLASMAS
    GODYAK, VA
    PIEJAK, RB
    ALEXANDROVICH, BM
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) : 3657 - 3663
  • [10] Non-Maxwellian laser produced Plasmas
    Rosmej, FB
    Calisti, A
    Talin, B
    Stamm, R
    Hoffmann, DHH
    Geissel, M
    Faenov, Y
    Pikuz, TA
    Skobelev, IY
    [J]. ATOMIC PROCESSES IN PLASMAS, 2002, 635 : 101 - 110