Universal lower bounds for quantum diffusion

被引:10
|
作者
Barbaroux, JM [1 ]
Tcheremchantsev, S
机构
[1] Univ Regensburg, Lehrstuhl Math, D-93040 Regensburg, Germany
[2] Univ Orleans, Dept Math, F-45067 Orleans, France
关键词
Schrodinger operators; spectral measure; double-space method; correlation dimensions; moment of order p; dynamical localization;
D O I
10.1006/jfan.1999.3471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the connections between dynamical properties of Schrodinger operators H on separable Hilbert space H and the properties of corresponding spectral measures. Our main result establishes a relation for the moment of order p of the form <<\X\(p)>(psi(t))>(T) = T-1 integral(o)(T) parallel to\X\(p/2) e(-itH)psi parallel to(H)(2) dt greater than or equal to L-psi,L- p/d(T). (1) Here L-psi,L-p/d(T) is a function connected to the behavior of the Fourier transform of measures in the subclass of measures absolutely continuous with respect to the spectral measure mu(psi). Beyond the intrinsic interest of the general formulation (1), this result allows us to derive necessary conditions for dynamical localization in the presence of a pure point spectrum. On the other hand, if we focus on subsequences of time TkNE arrow + infinity, we can exhibit lower bounds which are, in certain cases, strictly larger than the well-known power-law lower bound for all T expressed in terms of the Hausdorff dimension of spectral measures. (C) 1999 Academic Press.
引用
收藏
页码:327 / 354
页数:28
相关论文
共 50 条
  • [21] Quantum query algorithms and lower bounds
    Ambainis, A
    Classical and New Paradigms of Computation and Their Complexity Hierarchies, 2004, 23 : 15 - 32
  • [22] Size Lower Bounds for Quantum Automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, 2013, 7956 : 19 - 30
  • [23] Quantum lower bounds by entropy numbers
    Heinrich, Stefan
    JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 793 - 801
  • [24] Lower bounds for quantum oblivious transfer
    Chailloux, A., 2013, Rinton Press Inc. (13): : 1 - 2
  • [25] Lower bounds for quantum communication complexity
    Klauck, Hartmut
    SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 20 - 46
  • [26] Size lower bounds for quantum automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    THEORETICAL COMPUTER SCIENCE, 2014, 551 : 102 - 115
  • [27] Lower Bounds on Quantum Annealing Times
    Garcia-Pintos, Luis Pedro
    Brady, Lucas T.
    Bringewatt, Jacob
    Liu, Yi-Kai
    PHYSICAL REVIEW LETTERS, 2023, 130 (14)
  • [28] Lower Bounds for Quantum Parameter Estimation
    Walter, Michael
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 8007 - 8023
  • [29] Universal Lower Bounds for Potential Energy of Spherical Codes
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 385 - 415
  • [30] Universal Lower Bounds on Sampling Rates for Covariance Estimation
    Cohen, Deborah
    Eldar, Yonina C.
    Leus, Geert
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3272 - 3276