Universal lower bounds for quantum diffusion

被引:10
|
作者
Barbaroux, JM [1 ]
Tcheremchantsev, S
机构
[1] Univ Regensburg, Lehrstuhl Math, D-93040 Regensburg, Germany
[2] Univ Orleans, Dept Math, F-45067 Orleans, France
关键词
Schrodinger operators; spectral measure; double-space method; correlation dimensions; moment of order p; dynamical localization;
D O I
10.1006/jfan.1999.3471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the connections between dynamical properties of Schrodinger operators H on separable Hilbert space H and the properties of corresponding spectral measures. Our main result establishes a relation for the moment of order p of the form <<\X\(p)>(psi(t))>(T) = T-1 integral(o)(T) parallel to\X\(p/2) e(-itH)psi parallel to(H)(2) dt greater than or equal to L-psi,L- p/d(T). (1) Here L-psi,L-p/d(T) is a function connected to the behavior of the Fourier transform of measures in the subclass of measures absolutely continuous with respect to the spectral measure mu(psi). Beyond the intrinsic interest of the general formulation (1), this result allows us to derive necessary conditions for dynamical localization in the presence of a pure point spectrum. On the other hand, if we focus on subsequences of time TkNE arrow + infinity, we can exhibit lower bounds which are, in certain cases, strictly larger than the well-known power-law lower bound for all T expressed in terms of the Hausdorff dimension of spectral measures. (C) 1999 Academic Press.
引用
收藏
页码:327 / 354
页数:28
相关论文
共 50 条
  • [31] Universal upper and lower bounds on energy of spherical designs
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2015, 8 : 51 - 65
  • [32] Universal Lower Bounds for Potential Energy of Spherical Codes
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Constructive Approximation, 2016, 44 : 385 - 415
  • [33] Universal irreversibility of normal quantum diffusion
    Yamada, Hiroaki S.
    Ikeda, Kensuke S.
    PHYSICAL REVIEW E, 2010, 82 (06):
  • [34] Exact Universal Bounds on Quantum Dynamics and Fast Scrambling
    Vikram, Amit
    Galitski, Victor
    PHYSICAL REVIEW LETTERS, 2024, 132 (04)
  • [35] Universal Spin Transport and Quantum Bounds for Unitary Fermions
    Enss, Tilman
    Thywissen, Joseph H.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 85 - 106
  • [36] Lower bounds of concurrence for tripartite quantum systems
    Gao, Xiu-Hong
    Fei, Shao-Ming
    Wu, Ke
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [37] Lower bounds on the complexity of simulating quantum gates
    Childs, AM
    Haselgrove, HL
    Nielsen, MA
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [38] Lower bounds for local search by quantum arguments
    Aaronson, S
    SIAM JOURNAL ON COMPUTING, 2006, 35 (04) : 804 - 824
  • [39] Lower Bounds on the Capacities of Quantum Relay Channels
    石金晶
    施荣华
    彭小奇
    郭迎
    易留洋
    李门浩
    Communications in Theoretical Physics, 2012, 58 (10) : 487 - 492
  • [40] Lower bounds for adiabatic quantum algorithms by quantum speed limits
    Chen, Jyong-Hao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):