Lower Bounds on Quantum Annealing Times

被引:9
|
作者
Garcia-Pintos, Luis Pedro [1 ,2 ,3 ]
Brady, Lucas T. [4 ,5 ]
Bringewatt, Jacob [1 ,2 ]
Liu, Yi-Kai [1 ,6 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
[4] NASA Ames Res Ctr, Quantum Artificial Intelligence Lab, Moffett Field, CA 94035 USA
[5] KBR, 601 Jefferson St, Houston, TX 77002 USA
[6] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Adiabatic theorem - Annealing time - Condition - Fast annealing - Ferromagnetics - Low bound - Quantum annealing - Search models - Target state - Toy models;
D O I
10.1103/PhysRevLett.130.140601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic regime are rare. Here, we provide such a result, deriving lower bounds on the time needed to successfully perform quantum annealing. The bounds are asymptotically saturated by three toy models where fast annealing schedules are known: the Roland and Cerf unstructured search model, the Hamming spike problem, and the ferromagnetic p-spin model. Our bounds demonstrate that these schedules have optimal scaling. Our results also show that rapid annealing requires coherent superpositions of energy eigenstates, singling out quantum coherence as a computational resource.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lower Bounds on Quantum Annealing Times (vol 130, 140601, 2023)
    Garcia-Pintos, Luis Pedro
    Brady, Lucas T.
    Bringewatt, Jacob
    Liu, Yi-Kai
    PHYSICAL REVIEW LETTERS, 2024, 132 (26)
  • [2] ANALYSIS OF LOWER BOUNDS FOR QUANTUM CONTROL TIMES AND THEIR RELATION TO THE QUANTUM SPEED LIMIT
    Poggi, P. M.
    ANALES AFA, 2020, 31 (01): : 29 - 38
  • [3] Quantum lower bounds by quantum arguments
    Ambainis, A
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (04) : 750 - 767
  • [4] Quantum lower bounds for fanout
    Fang, M.
    Fenner, S.
    Green, F.
    Homer, S.
    Zhang, Y.
    Quantum Information and Computation, 2006, 6 (01): : 046 - 057
  • [5] Quantum lower bounds for fanout
    Fang, M
    Fenner, S
    Homer, S
    Zhang, Y
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (01) : 46 - 57
  • [6] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    De Wolf, R
    JOURNAL OF THE ACM, 2001, 48 (04) : 778 - 797
  • [7] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    de Wolf, R
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 352 - 361
  • [8] Classical lower bounds from quantum upper bounds
    Ben-David, Shalev
    Bouland, Adam
    Garg, Ankit
    Kothari, Robin
    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 339 - 349
  • [9] Lower bounds for quantum communication complexity
    Klauck, H
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 288 - 297
  • [10] LOWER BOUNDS ON QUANTUM QUERY COMPLEXITY
    Toran, Jacobo
    Hoyer, Peter
    Spalek, Robert
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2005, (87): : 78 - 103