Lower Bounds on Quantum Annealing Times

被引:9
|
作者
Garcia-Pintos, Luis Pedro [1 ,2 ,3 ]
Brady, Lucas T. [4 ,5 ]
Bringewatt, Jacob [1 ,2 ]
Liu, Yi-Kai [1 ,6 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
[4] NASA Ames Res Ctr, Quantum Artificial Intelligence Lab, Moffett Field, CA 94035 USA
[5] KBR, 601 Jefferson St, Houston, TX 77002 USA
[6] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Adiabatic theorem - Annealing time - Condition - Fast annealing - Ferromagnetics - Low bound - Quantum annealing - Search models - Target state - Toy models;
D O I
10.1103/PhysRevLett.130.140601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic regime are rare. Here, we provide such a result, deriving lower bounds on the time needed to successfully perform quantum annealing. The bounds are asymptotically saturated by three toy models where fast annealing schedules are known: the Roland and Cerf unstructured search model, the Hamming spike problem, and the ferromagnetic p-spin model. Our bounds demonstrate that these schedules have optimal scaling. Our results also show that rapid annealing requires coherent superpositions of energy eigenstates, singling out quantum coherence as a computational resource.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Size lower bounds for quantum automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    THEORETICAL COMPUTER SCIENCE, 2014, 551 : 102 - 115
  • [22] Lower Bounds for Quantum Parameter Estimation
    Walter, Michael
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 8007 - 8023
  • [23] Lower bounds on partial sums of expected hitting times
    Yoon, Hyungkuk
    Kim, Bara
    Kim, Jeongsim
    STATISTICS & PROBABILITY LETTERS, 2020, 160
  • [24] Lower bounds of concurrence for tripartite quantum systems
    Gao, Xiu-Hong
    Fei, Shao-Ming
    Wu, Ke
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [25] Lower bounds on the complexity of simulating quantum gates
    Childs, AM
    Haselgrove, HL
    Nielsen, MA
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [26] Lower bounds for local search by quantum arguments
    Aaronson, S
    SIAM JOURNAL ON COMPUTING, 2006, 35 (04) : 804 - 824
  • [27] Lower Bounds on the Capacities of Quantum Relay Channels
    石金晶
    施荣华
    彭小奇
    郭迎
    易留洋
    李门浩
    Communications in Theoretical Physics, 2012, 58 (10) : 487 - 492
  • [28] Lower bounds for adiabatic quantum algorithms by quantum speed limits
    Chen, Jyong-Hao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [29] Entanglement and the lower bounds on the speed of quantum evolution
    Borras, A.
    Casas, M.
    Plastino, A. R.
    Plastino, A.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [30] Detecting Lower Bounds to Quantum Channel Capacities
    Macchiavello, Chiara
    Sacchi, Massimiliano F.
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)