Lower Bounds on Quantum Annealing Times

被引:9
|
作者
Garcia-Pintos, Luis Pedro [1 ,2 ,3 ]
Brady, Lucas T. [4 ,5 ]
Bringewatt, Jacob [1 ,2 ]
Liu, Yi-Kai [1 ,6 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
[4] NASA Ames Res Ctr, Quantum Artificial Intelligence Lab, Moffett Field, CA 94035 USA
[5] KBR, 601 Jefferson St, Houston, TX 77002 USA
[6] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Adiabatic theorem - Annealing time - Condition - Fast annealing - Ferromagnetics - Low bound - Quantum annealing - Search models - Target state - Toy models;
D O I
10.1103/PhysRevLett.130.140601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic regime are rare. Here, we provide such a result, deriving lower bounds on the time needed to successfully perform quantum annealing. The bounds are asymptotically saturated by three toy models where fast annealing schedules are known: the Roland and Cerf unstructured search model, the Hamming spike problem, and the ferromagnetic p-spin model. Our bounds demonstrate that these schedules have optimal scaling. Our results also show that rapid annealing requires coherent superpositions of energy eigenstates, singling out quantum coherence as a computational resource.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Lower bounds of a quantum search for an extreme point
    Ozhigov, Y
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2165 - 2172
  • [32] Quantum algorithms and lower bounds for convex optimization
    Chakrabarti, Shouvanik
    Childs, Andrew M.
    Li, Tongyang
    Wu, Xiaodi
    QUANTUM, 2020, 4
  • [33] Lower bounds for the conductivities of correlated quantum systems
    Jung, Peter
    Rosch, Achim
    PHYSICAL REVIEW B, 2007, 75 (24):
  • [34] Lower Bounds for Generalized Quantum Finite Automata
    Mercer, Mark
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2008, 5196 : 373 - 384
  • [35] Lower bounds in the quantum cell probe model
    Sen, P
    Venkatesh, S
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 358 - 369
  • [36] Lower Bounds on the Capacities of Quantum Relay Channels
    Shi Jin-Jing
    Shi Rong-Hua
    Peng Xiao-Qi
    Guo Ying
    Yi Liu-Yang
    Lee Moon-Ho
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) : 487 - 492
  • [37] A geometric approach to quantum circuit lower bounds
    Nielsen, MA
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (03) : 213 - 262
  • [38] Lower bounds on quantum multiparty communication complexity
    Lee, Troy
    Schechtman, Gideon
    Shraibman, Adi
    PROCEEDINGS OF THE 24TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, 2009, : 254 - +
  • [39] Explicit Lower Bounds on Strong Quantum Simulation
    Huang, Cupjin
    Newman, Michael
    Szegedy, Mario
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5585 - 5600
  • [40] Adversary lower bounds for nonadaptive quantum algorithms
    Koiran, Pascal
    Landes, Juergen
    Portier, Natacha
    Yao, Penghui
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2008, 5110 : 226 - +