Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models

被引:0
|
作者
Dubey, Avinava [1 ]
Williamson, Sinead A. [2 ]
Xing, Eric P. [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Pitman-Yor process provides an elegant way to cluster data that exhibit power law behavior, where the number of clusters is unknown or un-bounded. Unfortunately, inference in PitmanYor process-based models is typically slow and does not scale well with dataset size. In this paper we present new auxiliary-variable representations for the Pitman-Yor process and a special case of the hierarchical Pitman-Yor process that allows us to develop parallel inference algorithms that distribute inference both on the data space and the model space. We show that our method scales well with increasing data while avoiding any degradation in estimate quality.
引用
下载
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [21] Adaptive Incremental Mixture Markov Chain Monte Carlo
    Maire, Florian
    Friel, Nial
    Mira, Antonietta
    Raftery, Adrian E.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (04) : 790 - 805
  • [22] Parallel and interacting Markov chain Monte Carlo algorithm
    Campillo, Fabien
    Rakotozafy, Rivo
    Rossi, Vivien
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3424 - 3433
  • [23] PARALLEL MARKOV CHAIN MONTE CARLO FOR SENSOR SCHEDULING
    Raihan, Dilshad
    Faber, Weston
    Chakravorty, Suman
    Hussein, Islam
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2447 - 2454
  • [24] On the use of Markov chain Monte Carlo methods for the sampling of mixture models: a statistical perspective
    Douc, Randal
    Maire, Florian
    Olsson, Jimmy
    STATISTICS AND COMPUTING, 2015, 25 (01) : 95 - 110
  • [25] On the use of Markov chain Monte Carlo methods for the sampling of mixture models: a statistical perspective
    Randal Douc
    Florian Maire
    Jimmy Olsson
    Statistics and Computing, 2015, 25 : 95 - 110
  • [26] Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
    Whiley, M
    Wilson, SP
    STATISTICS AND COMPUTING, 2004, 14 (03) : 171 - 179
  • [27] Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models
    Zhang, Junyi
    Dassios, Angelos
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (02) : 590 - 611
  • [28] Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
    Matt Whiley
    Simon P. Wilson
    Statistics and Computing, 2004, 14 : 171 - 179
  • [29] Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior
    Ayed, Fadhel
    Lee, Juho
    Caron, Francois
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [30] 3D Object Modeling and Recognition via Online Hierarchical Pitman-Yor Process Mixture Learning
    Fan, Wentao
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    Du, Ji-Xiang
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 448 - 452