Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models

被引:0
|
作者
Dubey, Avinava [1 ]
Williamson, Sinead A. [2 ]
Xing, Eric P. [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Pitman-Yor process provides an elegant way to cluster data that exhibit power law behavior, where the number of clusters is unknown or un-bounded. Unfortunately, inference in PitmanYor process-based models is typically slow and does not scale well with dataset size. In this paper we present new auxiliary-variable representations for the Pitman-Yor process and a special case of the hierarchical Pitman-Yor process that allows us to develop parallel inference algorithms that distribute inference both on the data space and the model space. We show that our method scales well with increasing data while avoiding any degradation in estimate quality.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [41] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [42] Morpheme Level Hierarchical Pitman-Yor Class-based Language Models for LVCSR of Morphologically Rich Languages
    Mousa, Amr El-Desoky
    Shaik, M. Ali Basha
    Schlueter, Ralf
    Ney, Hermann
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 3376 - 3380
  • [43] Bayesian mixture modelling in geochronology via Markov chain Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Gallagher, Kerry
    Holmes, Christopher C.
    MATHEMATICAL GEOLOGY, 2006, 38 (03): : 269 - 300
  • [44] Markov chain Monte Carlo analysis of Bianchi VIIh models
    Bridges, M.
    McEwen, J. D.
    Lasenby, A. N.
    Hobson, M. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 377 (04) : 1473 - 1480
  • [45] Markov Chain Monte-Carlo Models of Starburst Clusters
    Melnick, Jorge
    NEW WINDOWS ON MASSIVE STARS: ASTEROSEISMOLOGY, INTERFEROMETRY AND SPECTROPOLARIMETRY, 2014, 307 : 123 - 124
  • [46] Perturbation analysis of Markov chain Monte Carlo for graphical models
    Lin, Na
    Liu, Yuanyuan
    Smith, Aaron
    JOURNAL OF APPLIED PROBABILITY, 2025,
  • [47] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [48] Markov chain Monte Carlo for dynamic generalised linear models
    Gamerman, D
    BIOMETRIKA, 1998, 85 (01) : 215 - 227
  • [49] Hierarchical models, data augmentation, and Markov chain Monte Carlo
    van Dyk, DA
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 41 - 56
  • [50] Introduction: Bayesian models and Markov chain Monte Carlo methods
    Thomas, DC
    GENETIC EPIDEMIOLOGY, 2001, 21 : S660 - S661