On the use of Markov chain Monte Carlo methods for the sampling of mixture models: a statistical perspective

被引:0
|
作者
Randal Douc
Florian Maire
Jimmy Olsson
机构
[1] Institut Télécom/Télécom SudParis,CNRS UMR 5157 SAMOVAR
[2] KTH Royal Institute of Technology,undefined
来源
Statistics and Computing | 2015年 / 25卷
关键词
Asymptotic variance; Carlin & Chib’s pseudo-prior method; Inhomogeneous Markov chains; Metropolisation; Mixture models; Peskun ordering;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study asymptotic properties of different data-augmentation-type Markov chain Monte Carlo algorithms sampling from mixture models comprising discrete as well as continuous random variables. Of particular interest to us is the situation where sampling from the conditional distribution of the continuous component given the discrete component is infeasible. In this context, we advance Carlin & Chib’s pseudo-prior method as an alternative way of infering mixture models and discuss and compare different algorithms based on this scheme. We propose a novel algorithm, the Frozen Carlin & Chib sampler, which is computationally less demanding than any Metropolised Carlin & Chib-type algorithm. The significant gain of computational efficiency is however obtained at the cost of some asymptotic variance. The performance of the algorithm vis-à-vis alternative schemes is, using some recent results obtained in Maire et al. (Ann Stat 42: 1483–1510, 2014) for inhomogeneous Markov chains evolving alternatingly according to two different π∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{*}$$\end{document}-reversible Markov transition kernels, investigated theoretically as well as numerically.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 50 条
  • [1] On the use of Markov chain Monte Carlo methods for the sampling of mixture models: a statistical perspective
    Douc, Randal
    Maire, Florian
    Olsson, Jimmy
    [J]. STATISTICS AND COMPUTING, 2015, 25 (01) : 95 - 110
  • [2] A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling
    Hobert, JP
    Robert, CP
    [J]. ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1295 - 1305
  • [3] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [4] ENHANCED MIXTURE POPULATION MONTE CARLO VIA STOCHASTIC OPTIMIZATION AND MARKOV CHAIN MONTE CARLO SAMPLING
    El-Laham, Yousef
    Djuric, Petar M.
    Bugallo, Monica F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5475 - 5479
  • [5] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Daniel Turek
    Perry de Valpine
    Christopher J. Paciorek
    [J]. Environmental and Ecological Statistics, 2016, 23 : 549 - 564
  • [6] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (04) : 549 - 564
  • [7] Introduction to “On the use of Markov chain Monte Carlo methods for the sampling of mixture models” by R. Douc, F. Maire, J. Olsson
    Stefano Peluso
    [J]. Statistics and Computing, 2015, 25 : 93 - 94
  • [8] Introduction to "On the use of Markov chain Monte Carlo methods for the sampling of mixture models" by R. Douc, F. Maire, J. Olsson
    Peluso, Stefano
    [J]. STATISTICS AND COMPUTING, 2015, 25 (01) : 93 - 94
  • [9] Introduction: Bayesian models and Markov chain Monte Carlo methods
    Thomas, DC
    [J]. GENETIC EPIDEMIOLOGY, 2001, 21 : S660 - S661
  • [10] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    [J]. JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316