Deep Model-Based 6D Pose Refinement in RGB

被引:90
|
作者
Manhardt, Fabian [1 ]
Kehl, Wadim [2 ]
Navab, Nassir [1 ]
Tombari, Federico [1 ]
机构
[1] Tech Univ Munich, D-85748 Garching, Germany
[2] Toyota Res Inst, Los Altos, CA 94022 USA
来源
关键词
Pose estimation; Pose refinement; Tracking; TIME VISUAL TRACKING; OBJECT TRACKING; SEGMENTATION;
D O I
10.1007/978-3-030-01264-9_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach for model-based 6D pose refinement in color data. Building on the established idea of contour-based pose tracking, we teach a deep neural network to predict a translational and rotational update. At the core, we propose a new visual loss that drives the pose update by aligning object contours, thus avoiding the definition of any explicit appearance model. In contrast to previous work our method is correspondence-free, segmentation-free, can handle occlusion and is agnostic to geometrical symmetry as well as visual ambiguities. Additionally, we observe a strong robustness towards rough initialization. The approach can run in real-time and produces pose accuracies that come close to 3D ICP without the need for depth data. Furthermore, our networks are trained from purely synthetic data and will be published together with the refinement code at http://campar.in.tum.de/Main/FabianManhardt to ensure reproducibility.
引用
收藏
页码:833 / 849
页数:17
相关论文
共 50 条
  • [21] Dense Color Constraints based 6D object pose estimation from RGB-D images
    Wang, Zilun
    Liu, Yi
    Xu, Chi
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6416 - 6420
  • [22] 6D Object Pose Estimation in Cluttered Scenes from RGB Images
    Yang, Xiao-Long
    Jia, Xiao-Hong
    Liang, Yuan
    Fan, Lu-Bin
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2022, 37 (03): : 719 - 730
  • [23] SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation
    Jiang, Haobo
    Salzmann, Mathieu
    Dang, Zheng
    Xie, Jin
    Yang, Jian
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88
  • [25] MP6D: An RGB-D Dataset for Metal Parts' 6D Pose Estimation
    Chen, Long
    Yang, Han
    Wu, Chenrui
    Wu, Shiqing
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 5912 - 5919
  • [26] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Yi Li
    Gu Wang
    Xiangyang Ji
    Yu Xiang
    Dieter Fox
    [J]. International Journal of Computer Vision, 2020, 128 : 657 - 678
  • [27] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Li, Yi
    Wang, Gu
    Ji, Xiangyang
    Xiang, Yu
    Fox, Dieter
    [J]. COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 695 - 711
  • [28] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Li, Yi
    Wang, Gu
    Ji, Xiangyang
    Xiang, Yu
    Fox, Dieter
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (03) : 657 - 678
  • [29] Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
    Krull, Alexander
    Brachmann, Eric
    Michel, Frank
    Yang, Michael Ying
    Gumhold, Stefan
    Rother, Carsten
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 954 - 962
  • [30] ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Pose
    Periyasamy, Arul Selvam
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    [J]. COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2020, 2022, 1474 : 353 - 371