DeepIM: Deep Iterative Matching for 6D Pose Estimation

被引:0
|
作者
Li, Yi [1 ,2 ]
Wang, Gu [1 ,2 ]
Ji, Xiangyang [1 ,2 ]
Xiang, Yu [3 ,4 ]
Fox, Dieter [3 ,4 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] BNRist, Beijing, Peoples R China
[3] Univ Washington, Seattle, WA 98195 USA
[4] NVIDIA Res, Seattle, WA USA
来源
基金
美国国家科学基金会; 国家重点研发计划;
关键词
3D object recognition; 6D object pose estimation; RECOGNITION;
D O I
10.1007/978-3-030-01231-1_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using an untangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over state-of-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
引用
收藏
页码:695 / 711
页数:17
相关论文
共 50 条
  • [1] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Yi Li
    Gu Wang
    Xiangyang Ji
    Yu Xiang
    Dieter Fox
    [J]. International Journal of Computer Vision, 2020, 128 : 657 - 678
  • [2] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Li, Yi
    Wang, Gu
    Ji, Xiangyang
    Xiang, Yu
    Fox, Dieter
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (03) : 657 - 678
  • [3] PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching
    Castro, Pedro
    Kim, Tae-Kyun
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2140 - 2149
  • [4] DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
    Wang, Chen
    Xu, Danfei
    Zhu, Yuke
    Martin-Martin, Roberto
    Lu, Cewu
    Li Fei-Fei
    Savarese, Silvio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3338 - 3347
  • [5] Spatial Attention Improves Iterative 6D Object Pose Estimation
    Stevsic, Stefan
    Hilliges, Otmar
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 1070 - 1078
  • [6] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [7] Deep Fusion for Multi-Modal 6D Pose Estimation
    Lin, Shifeng
    Wang, Zunran
    Zhang, Shenghao
    Ling, Yonggen
    Yang, Chenguang
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, : 1 - 10
  • [8] Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
    Wursthorn, Kira
    Hillemann, Markus
    Ulrich, Markus
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 223 - 230
  • [9] Weak6D: Weakly Supervised 6D Pose Estimation With Iterative Annotation Resolver
    Mu, Fengjun
    Huang, Rui
    Shi, Kecheng
    Li, Xin
    Qiu, Jing
    Cheng, Hong
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03): : 1463 - 1470
  • [10] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619