Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

被引:0
|
作者
Pawlak, Tomasz P. [1 ]
Krawiec, Krzysztof [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, Poznan, Poland
关键词
Semantics; metrics; geometry; effectiveness; theory; experiment; PHENOTYPIC DIVERSITY; CROSSOVER; OPERATORS; PREDICTION; ROLES;
D O I
10.1162/evco_a_00205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Program semantics is a promising recent research thread in Genetic Programming (GP). Over adozen semantic-aware search, selection, and initialization operators for GP have been proposed to date. Some of these operators are designed to exploit the geometric properties of semantic space, while others focus on making offspring effective, that is, semantically different from their parents. Only asmall fraction of previous works aimed at addressing both of these features simultaneously. In this article, we propose asuite of competent operators that combine effectiveness with geometry for population initialization, mate selection, mutation, and crossover. We present atheoretical rationale behind these operators and compare them experimentally to operators known from literature on symbolic regression and Boolean function synthesis benchmarks. We analyze each operator in isolation as well as verify how they fare together in an evolutionary run, concluding that the competent operators are superior on awide range of performance indicators, including best-of-run fitness, test-set fitness, and programsize.
引用
收藏
页码:177 / 212
页数:36
相关论文
共 50 条
  • [41] Sensitivity analysis of genetic programming: A case of symbolic regression
    Chen, SH
    Kuo, TW
    Shieh, YP
    [J]. PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 1119 - 1122
  • [42] Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming
    Randall, David L.
    Townsend, Tyler S.
    Hochhalter, Jacob D.
    Bomarito, Geoffrey F.
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2282 - 2288
  • [43] Genetic Programming for Instance Transfer Learning in Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (01) : 25 - 38
  • [44] Racing Control Variable Genetic Programming for Symbolic Regression
    Jiang, Nan
    Xue, Yexiang
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 12901 - 12909
  • [45] An Efficient Federated Genetic Programming Framework for Symbolic Regression
    Dong, Junlan
    Zhong, Jinghui
    Chen, Wei-Neng
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 858 - 871
  • [46] Genetic Programming for Symbolic Regression of Chemical Process Systems
    Babu, B. V.
    Karthik, S.
    [J]. ENGINEERING LETTERS, 2007, 14 (02)
  • [47] Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
    Fleck, Philipp
    Werth, Bernhard
    Affenzeller, Michael
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [48] A new hybrid structure genetic programming in symbolic regression
    Xiong, SW
    Wang, WW
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1500 - 1506
  • [49] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    [J]. MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [50] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    [J]. Memetic Computing, 2020, 12 : 299 - 315