Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming

被引:4
|
作者
Randall, David L. [1 ]
Townsend, Tyler S. [2 ]
Hochhalter, Jacob D. [1 ]
Bomarito, Geoffrey F. [3 ]
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Microsoft, Redmond, WA USA
[3] NASA Langley Res Ctr, Hampton, VA USA
关键词
genetic programming; symbolic regression; genetic programming for symbolic regression;
D O I
10.1145/3520304.3534031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce Bingo, a flexible and customizable yet performant Python framework for symbolic regression with genetic programming. Bingo maintains a modular code structure for simple abstraction and easily swappable components. Fitness functions, selection methods, and constant optimization methods allow for easy problem-specific customization. Bingo also maintains several features for increased efficiency such as parallelism, equation simplification, and a C++ backend. We compare Bingo's performance to other genetic programming for symbolic regression (GPSR) methods to show that it is both competitive and flexible.
引用
收藏
页码:2282 / 2288
页数:7
相关论文
共 50 条
  • [1] An Efficient Federated Genetic Programming Framework for Symbolic Regression
    Dong, Junlan
    Zhong, Jinghui
    Chen, Wei-Neng
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 858 - 871
  • [2] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    [J]. MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [3] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    [J]. Memetic Computing, 2020, 12 : 299 - 315
  • [4] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [5] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [6] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [7] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    [J]. SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [8] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [9] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [10] A fast parallel genetic programming framework with adaptively weighted primitives for symbolic regression
    Huang, Zhixing
    Zhong, Jinghui
    Feng, Liang
    Mei, Yi
    Cai, Wentong
    [J]. SOFT COMPUTING, 2020, 24 (10) : 7523 - 7539