Racing Control Variable Genetic Programming for Symbolic Regression

被引:0
|
作者
Jiang, Nan [1 ]
Xue, Yexiang [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
ALGORITHMS; DESIGNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression, as one of the most crucial tasks in AI for science, discovers governing equations from experimental data. Popular approaches based on genetic programming, Monte Carlo tree search, or deep reinforcement learning learn symbolic regression from a fixed dataset. These methods require massive datasets and long training time especially when learning complex equations involving many variables. Recently, Control Variable Genetic Programming (CVGP) has been introduced which accelerates the regression process by discovering equations from designed control variable experiments. However, the set of experiments is fixed a-priori in CVGP and we observe that sub-optimal selection of experiment schedules delay the discovery process significantly. To overcome this limitation, we propose Racing Control Variable Genetic Programming (Racing-CVGP), which carries out multiple experiment schedules simultaneously. A selection scheme similar to that used in selecting good symbolic equations in the genetic programming process is implemented to ensure that promising experiment schedules eventually win over the average ones. The unfavorable schedules are terminated early to save time for the promising ones. We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series of symbolic regressors which discover equations from fixed datasets.
引用
收藏
页码:12901 / 12909
页数:9
相关论文
共 50 条
  • [1] Symbolic Regression via Control Variable Genetic Programming
    Jiang, Nan
    Xue, Yexiang
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 178 - 195
  • [2] Variable neighborhood programming for symbolic regression
    Souhir Elleuch
    Bassem Jarboui
    Nenad Mladenovic
    Jun Pei
    [J]. Optimization Letters, 2022, 16 : 191 - 210
  • [3] Variable neighborhood programming for symbolic regression
    Elleuch, Souhir
    Jarboui, Bassem
    Mladenovic, Nenad
    Pei, Jun
    [J]. OPTIMIZATION LETTERS, 2022, 16 (01) : 191 - 210
  • [4] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [5] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [6] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [7] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    [J]. SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [8] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [9] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [10] A new genetic programming approach in symbolic regression
    Xiong, SW
    Wang, WW
    Li, F
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 161 - 165