Racing Control Variable Genetic Programming for Symbolic Regression

被引:0
|
作者
Jiang, Nan [1 ]
Xue, Yexiang [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
ALGORITHMS; DESIGNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression, as one of the most crucial tasks in AI for science, discovers governing equations from experimental data. Popular approaches based on genetic programming, Monte Carlo tree search, or deep reinforcement learning learn symbolic regression from a fixed dataset. These methods require massive datasets and long training time especially when learning complex equations involving many variables. Recently, Control Variable Genetic Programming (CVGP) has been introduced which accelerates the regression process by discovering equations from designed control variable experiments. However, the set of experiments is fixed a-priori in CVGP and we observe that sub-optimal selection of experiment schedules delay the discovery process significantly. To overcome this limitation, we propose Racing Control Variable Genetic Programming (Racing-CVGP), which carries out multiple experiment schedules simultaneously. A selection scheme similar to that used in selecting good symbolic equations in the genetic programming process is implemented to ensure that promising experiment schedules eventually win over the average ones. The unfavorable schedules are terminated early to save time for the promising ones. We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series of symbolic regressors which discover equations from fixed datasets.
引用
收藏
页码:12901 / 12909
页数:9
相关论文
共 50 条
  • [21] Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming
    Randall, David L.
    Townsend, Tyler S.
    Hochhalter, Jacob D.
    Bomarito, Geoffrey F.
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2282 - 2288
  • [22] Population diversity and inheritance in genetic programming for symbolic regression
    Burlacu, Bogdan
    Yang, Kaifeng
    Affenzeller, Michael
    [J]. NATURAL COMPUTING, 2024, 23 (03) : 531 - 566
  • [23] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    [J]. 2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [24] Cartesian Genetic Programming with Module Mutation for Symbolic Regression
    Kushida, Jun-ichi
    Hara, Akira
    Takahama, Tetsuyuki
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 159 - 164
  • [25] Genetic Programming for Symbolic Regression of Chemical Process Systems
    Babu, B. V.
    Karthik, S.
    [J]. ENGINEERING LETTERS, 2007, 14 (02)
  • [26] An Efficient Federated Genetic Programming Framework for Symbolic Regression
    Dong, Junlan
    Zhong, Jinghui
    Chen, Wei-Neng
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 858 - 871
  • [27] A new hybrid structure genetic programming in symbolic regression
    Xiong, SW
    Wang, WW
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1500 - 1506
  • [28] Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
    Fleck, Philipp
    Werth, Bernhard
    Affenzeller, Michael
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [29] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    [J]. MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [30] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    [J]. Memetic Computing, 2020, 12 : 299 - 315