Bayesian minimally supported D-optimal designs for an exponential regression model

被引:4
|
作者
Fang, Z
Wiens, DP
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
canonical moments; continued fractions; nonlinear regression;
D O I
10.1081/STA-120029833
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of obtaining static (i.e., nonsequential), approximate optimal designs for a nonlinear regression model with response E[Y\x] exp(theta(0) + theta(1)x + (...) + theta(k)x(k)). The problem can be transformed to the design problem for a heteroscedastic polynomial regression model, where the variance function is of an exponential form with unknown parameters. Under the assumption that sufficient prior information about these parameters is available, minimally supported Bayesian D-optimal designs are obtained. A general procedure for constructing Such designs is provided; as well the analytic forms of these designs are derived for some special priors. The theory of canonical moments and the theory of continued fractions are applied for these purposes.
引用
收藏
页码:1187 / 1204
页数:18
相关论文
共 50 条
  • [41] A GENERALIZATION OF D-OPTIMAL AND D1-OPTIMAL DESIGNS IN POLYNOMIAL REGRESSION
    DETTE, H
    [J]. ANNALS OF STATISTICS, 1990, 18 (04): : 1784 - 1804
  • [42] Filling and D-optimal designs for the correlated generalized exponential models
    Rodriguez-Diaz, J. M.
    Santos-Martin, M. T.
    Waldl, H.
    Stehlik, M.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 114 : 10 - 18
  • [43] BAYESIAN D-OPTIMAL AND MODEL ROBUST DESIGNS IN LINEAR-REGRESSION MODELS (VOL 25, PG 27, 1993)
    DETTE, H
    [J]. STATISTICS, 1995, 26 (03) : 285 - 286
  • [44] D-optimal designs
    deAguiar, PF
    Bourguignon, B
    Khots, MS
    Massart, DL
    PhanThanLuu, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 30 (02) : 199 - 210
  • [45] Minimax D-optimal designs for the logistic model
    King, J
    Wong, WK
    [J]. BIOMETRICS, 2000, 56 (04) : 1263 - 1267
  • [46] On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions
    Alexanderian, Alen
    Gloor, Philip J.
    Ghattas, Omar
    [J]. BAYESIAN ANALYSIS, 2016, 11 (03): : 671 - 695
  • [47] Bayesian D-optimal designs for error-in-variables models
    Konstantinou, Maria
    Dette, Holger
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (03) : 269 - 281
  • [48] D-optimal designs for Poisson regression with synergetic interaction effect
    Freise, Fritjof
    Grasshoff, Ulrike
    Roettger, Frank
    Schwabe, Rainer
    [J]. TEST, 2021, 30 (04) : 1004 - 1025
  • [49] D-optimal designs for full and reduced Fourier regression models
    Xu, Xiaojian
    Shang, Xiaoli
    [J]. STATISTICAL PAPERS, 2017, 58 (03) : 811 - 829
  • [50] ON D-OPTIMAL DESIGNS FOR COMPLETELY NONLINEAR-REGRESSION MODELS
    SINGH, N
    [J]. UTILITAS MATHEMATICA, 1984, 26 (NOV) : 11 - 15