Bayesian minimally supported D-optimal designs for an exponential regression model

被引:4
|
作者
Fang, Z
Wiens, DP
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
canonical moments; continued fractions; nonlinear regression;
D O I
10.1081/STA-120029833
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of obtaining static (i.e., nonsequential), approximate optimal designs for a nonlinear regression model with response E[Y\x] exp(theta(0) + theta(1)x + (...) + theta(k)x(k)). The problem can be transformed to the design problem for a heteroscedastic polynomial regression model, where the variance function is of an exponential form with unknown parameters. Under the assumption that sufficient prior information about these parameters is available, minimally supported Bayesian D-optimal designs are obtained. A general procedure for constructing Such designs is provided; as well the analytic forms of these designs are derived for some special priors. The theory of canonical moments and the theory of continued fractions are applied for these purposes.
引用
收藏
页码:1187 / 1204
页数:18
相关论文
共 50 条
  • [31] Locally, Bayesian and non parametric Bayesian optimal designs for unit exponential regression model
    Nanvapisheh, Anita Abdollahi
    Jafari, Habib
    Khazaei, Soleiman
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [32] Bayesian D-optimal Designs for Weibull Distribution with Censoring
    Zohbi, Ibrahim
    Wainakh, Mohieldin
    Arafeh, Hamzeh
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (08) : 2789 - 2802
  • [33] Generalized Bayesian D-optimal supersaturated multistratum designs
    Lin, Chang-Yun
    [J]. QUALITY ENGINEERING, 2020, 32 (02) : 212 - 222
  • [34] D-optimal designs for combined linear and trigonometric regression
    Wu, HQ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (01) : 177 - 184
  • [35] Convergence properties of sequential Bayesian D-optimal designs
    Roy, Anindya
    Ghosal, Subhashis
    Rosenberger, William F.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 425 - 440
  • [36] Locally D-optimal designs for exponential regression models (vol 16, pg 789, 2006)
    Dette, Holger
    Melas, Viatcheslav B.
    Wong, Weng Kee
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1447 - 1447
  • [37] A SIMPLE BAYESIAN MODIFICATION OF D-OPTIMAL DESIGNS TO REDUCE DEPENDENCE ON AN ASSUMED MODEL
    DUMOUCHEL, W
    JONES, B
    [J]. TECHNOMETRICS, 1994, 36 (01) : 37 - 47
  • [38] D-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WITHOUT AN INTERCEPT
    HUANG, MNL
    CHANG, FC
    WONG, WK
    [J]. STATISTICA SINICA, 1995, 5 (02) : 441 - 458
  • [39] D-optimal designs for logistic regression in two variables
    Haines, Linda M.
    Kabera, Gaetan
    Ndlovu, Principal
    O'Brien, Timothy E.
    [J]. MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, : 91 - +
  • [40] Bayesian D-optimal designs for the two parameter logistic mixed effects model
    Abebe, Haftom T.
    Tan, Frans E. S.
    Van Breukelen, Gerard J. P.
    Berger, Martijn P. F.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1066 - 1076