A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem

被引:19
|
作者
Schulz, H [1 ]
Steinbach, O [1 ]
机构
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
关键词
D O I
10.1007/s100920070009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new a posteriori error estimator for a boundary element solution related to a Dirichlet problem with a second order elliptic partial differential operator. The method is based on an approximate solution of a boundary integral equation of the second kind by a Neumann series to estimate the error of a previously computed boundary element solution. For this one may use an arbitrary boundary element method, for example, a Galerkin, collocation or qualocation scheme, to solve an appropriate boundary integral equation. Due to the approximate solution of the error equation the proposed estimator provides high accuracy. A numerical example supports the theoretical results.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 50 条
  • [1] A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem
    H. Schulz
    O. Steinbach
    [J]. CALCOLO, 2000, 37 : 79 - 96
  • [2] A new a posteriori error estimator in adaptive direct boundary element methods. The Neumann problem
    Schulz, H
    Steinbach, O
    [J]. MULTIFIELD PROBLEMS: STATE OF THE ART, 2000, : 201 - 208
  • [3] A POSTERIORI ERROR ESTIMATION FOR ADAPTIVE IGA BOUNDARY ELEMENT METHODS
    Feischl, Michael
    Gantner, Gregor
    Praetorius, Dirk
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 2421 - 2432
  • [4] A New a Posteriori Error Estimate for Adaptive Finite Element Methods
    Huang, Yunqing
    Wei, Huayi
    Yang, Wei
    Yi, Nianyu
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 63 - 74
  • [5] Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates
    Du, Shaohong
    He, Xiaoxia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 14 - 25
  • [6] Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Feischl, Michael
    Fuehrer, Thomas
    Heuer, Norbert
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (03) : 309 - 389
  • [7] A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions
    Repin, S
    Sauter, S
    Smolianski, A
    [J]. COMPUTING, 2003, 70 (03) : 205 - 233
  • [8] A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions
    S. Repin
    S. Sauter
    A. Smolianski
    [J]. Computing, 2003, 70 : 205 - 233
  • [9] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [10] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    [J]. Numerische Mathematik, 2021, 147 : 937 - 966