Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation

被引:23
|
作者
Feischl, Michael [1 ]
Fuehrer, Thomas [1 ]
Heuer, Norbert [2 ]
Karkulik, Michael [2 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
基金
奥地利科学基金会;
关键词
QUASI-UNIFORM MESHES; HYPERSINGULAR INTEGRAL-EQUATION; ARONSZAJN-SLOBODECKIJ NORM; WEAKLY SINGULAR-OPERATORS; H-P VERSION; L-2; PROJECTION; AVERAGING TECHNIQUES; UNSTRUCTURED GRIDS; EXPONENTIAL CONVERGENCE; DIRICHLET PROBLEM;
D O I
10.1007/s11831-014-9114-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper reviews the state of the art and discusses very recent mathematical developments in the field of adaptive boundary element methods. This includes an overview of available a posteriori error estimates as well as a state-of-the-art formulation of convergence and quasi-optimality of adaptive mesh-refining algorithms.
引用
收藏
页码:309 / 389
页数:81
相关论文
共 50 条
  • [1] Adaptive Boundary Element MethodsA Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Michael Feischl
    Thomas Führer
    Norbert Heuer
    Michael Karkulik
    Dirk Praetorius
    [J]. Archives of Computational Methods in Engineering, 2015, 22 : 309 - 389
  • [2] ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve
    Feischl, Michael
    Fuehrer, Thomas
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 38 : 49 - 60
  • [3] A POSTERIORI ERROR ESTIMATION FOR ADAPTIVE IGA BOUNDARY ELEMENT METHODS
    Feischl, Michael
    Gantner, Gregor
    Praetorius, Dirk
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 2421 - 2432
  • [4] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [5] Error analysis and adaptivity in the boundary element and related methods
    Mukherjee, S
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 1025 - 1034
  • [6] A Posteriori Error Estimators and Adaptivity for Finite Element Approximation of the Non-Homogeneous Dirichlet Problem
    Mark Ainsworth
    Donald W. Kelly
    [J]. Advances in Computational Mathematics, 2001, 15 : 3 - 23
  • [7] A posteriori error estimators and adaptivity for finite element approximation of the non-homogeneous Dirichlet problem
    Ainsworth, M
    Kelly, DW
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 3 - 23
  • [8] A posteriori error estimation and mesh adaptivity for finite volume and finite element methods
    Barth, TJ
    [J]. ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 183 - 202
  • [9] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [10] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    [J]. Numerische Mathematik, 2021, 147 : 937 - 966