A POSTERIORI ERROR ESTIMATION FOR ADAPTIVE IGA BOUNDARY ELEMENT METHODS

被引:0
|
作者
Feischl, Michael [1 ]
Gantner, Gregor [1 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
关键词
Isogeometric analysis; boundary element method; a posteriori error estimation; adaptive mesh-refinement; NURBS; ARONSZAJN-SLOBODECKIJ NORM; LOCALIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimation and adaptive mesh-refinement are well-established and important tools for standard boundary element methods (BEM) for polygonal boundaries and piecewise polynomial ansatz functions (see e.g. the seminal work [1] for the derivation of the weighted-residual error estimator and [5] for convergence even with optimal rates). In contrast, the mathematically reliable a posteriori error analysis for isogeometric BEM (IGABEM) has not been considered, yet. In our talk, we aim to shed some light on this gap and to transfer known results on reliable a posteriori error estimators [1, 3] from standard BEM to IGABEM.
引用
收藏
页码:2421 / 2432
页数:12
相关论文
共 50 条
  • [1] Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations
    Feischl, Michael
    Gantner, Gregor
    Praetorius, Dirk
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 : 362 - 386
  • [2] A POSTERIORI ERROR ESTIMATION FOR THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHODS
    RENCIS, JJ
    UREKEW, TJ
    JONG, KY
    KIRK, R
    FEDERICO, P
    [J]. COMPUTERS & STRUCTURES, 1990, 37 (01) : 103 - 117
  • [3] A posteriori boundary element error estimation
    Jou, J
    Liu, JL
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (01) : 1 - 19
  • [4] Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Feischl, Michael
    Fuehrer, Thomas
    Heuer, Norbert
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (03) : 309 - 389
  • [5] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [6] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    [J]. Numerische Mathematik, 2021, 147 : 937 - 966
  • [7] Functional a posteriori error estimates for boundary element methods
    Kurz, Stefan
    Pauly, Dirk
    Praetorius, Dirk
    Repin, Sergey
    Sebastian, Daniel
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (04) : 937 - 966
  • [8] A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem
    Schulz, H
    Steinbach, O
    [J]. CALCOLO, 2000, 37 (02) : 79 - 96
  • [9] ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve
    Feischl, Michael
    Fuehrer, Thomas
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 38 : 49 - 60
  • [10] A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem
    H. Schulz
    O. Steinbach
    [J]. CALCOLO, 2000, 37 : 79 - 96