A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions

被引:0
|
作者
S. Repin
S. Sauter
A. Smolianski
机构
[1] V.A. Steklov Mathematical Institut Fontanka 27,
[2] 191 011 St. Petersburg Russia e-mail: repin@pdmi.ras.ru,undefined
[3] Institut für Mathematik,undefined
[4] Universität Zürich Winterthurerstr. 190,undefined
[5] CH-8057 Zürich,undefined
[6] Switzerland e-mail: stas@amath.unizh.ch,undefined
[7] Institut für Mathematik,undefined
[8] Universität Zürich Winterthurerstr. 190,undefined
[9] CH-8057 Zürich,undefined
[10] Switzerland e-mail: antsmol@amath.unizh.ch,undefined
来源
Computing | 2003年 / 70卷
关键词
2000 Mathematics Subject Classification: 35J20, 65N15, 65N30.; Keywords and phrases: A posteriori error estimate, duality technique, reliability, efficiency, local error distribution.;
D O I
暂无
中图分类号
学科分类号
摘要
1, independently of the discretization method chosen. In particular, our error estimator can be applied also to problems and discretizations where the Galerkin orthogonality is not available. We will present different strategies for the evaluation of the error estimator. Only one constant appears in its definition which is the one from Friedrichs' inequality; that constant depends solely on the domain geometry, and the estimator is quite non-sensitive to the error in the constant evaluation. Finally, we show how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation.
引用
收藏
页码:205 / 233
页数:28
相关论文
共 50 条