On Some Properties of Riemann-Liouville Fractional Operator in Orlicz Spaces and Applications to Quadratic Integral Equations

被引:3
|
作者
Metwali, Mohamed M. A. [1 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math, Abadiyyat Damanhur, Egypt
关键词
Quadratic integral equation; fractional integral operator; compactness in measure; Orlicz spaces; 2; or?3-conditions; EXISTENCE;
D O I
10.2298/FIL2217009M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article demonstrates some properties of the Riemann-Liouville (R-L) fractional integral operator like acting, continuity, and boundedness in Orlicz spaces L phi. We apply these results to examine the solvability of the quadratic integral equation of fractional order in L phi. Because of the distinctive continuity and boundedness conditions of the operators in Orlicz spaces, we look for our concern in three situations when the generating N-functions fulfill increment ', increment 2, or increment 3-conditions. We utilize the analysis of the measure of noncompactness with the fixed point hypothesis. Our hypothesis can be effectively applied to various fractional problems.
引用
收藏
页码:6009 / 6020
页数:12
相关论文
共 50 条
  • [11] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    [J]. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [12] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [13] An e ffective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator
    Paul, Supriya Kumar
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    Baleanu, Dumitru
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 17448 - 17469
  • [14] Some properties and applications of the modified integral-differential operator of Riemann-Liouville in the class of harmonic functions
    Assylbekov, M. A.
    Torebek, B. T.
    Turmetov, B. Kh.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2013, 71 (03): : 11 - 20
  • [15] Extended Riemann-Liouville type fractional derivative operator with applications
    Agarwal, P.
    Nieto, Juan J.
    Luo, M. -J.
    [J]. OPEN MATHEMATICS, 2017, 15 : 1667 - 1681
  • [16] Essay on Fractional Riemann-Liouville Integral Operator versus Mikusinski's
    Li, Ming
    Zhao, Wei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [17] On the Riemann-Liouville fractional calculus and some recent applications
    Nonnenmacher, TF
    Metzler, R
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 557 - 566
  • [18] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [19] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [20] Some Simpson's Riemann-Liouville Fractional Integral Inequalities with Applications to Special Functions
    Nasir, Jamshed
    Qaisar, Shahid
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Mabela, Rostin Matendo
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022