Extended Riemann-Liouville type fractional derivative operator with applications

被引:32
|
作者
Agarwal, P. [1 ]
Nieto, Juan J. [2 ]
Luo, M. -J. [3 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Univ Santiago de Compostela, Inst Matemat, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15782, Spain
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
来源
OPEN MATHEMATICS | 2017年 / 15卷
关键词
Gamma function; Extended beta function; Riemann-Liouville fractional derivative; Hypergeometric functions; Fox H-function; Generating functions; Mellin transform; Integral representations; INCOMPLETE GAMMA-FUNCTIONS; EXTENSION; BETA;
D O I
10.1515/math-2017-0137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox's H-function are also presented.
引用
收藏
页码:1667 / 1681
页数:15
相关论文
共 50 条
  • [1] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [2] GENERALIZED EXTENDED RIEMANN-LIOUVILLE TYPE FRACTIONAL DERIVATIVE OPERATOR
    Abbas, Hafida
    Azzouz, Abdelhalim
    Zahaf, Mohammed Brahim
    Belmekki, Mohammed
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (01): : 57 - 80
  • [3] A further extension of the extended Riemann-Liouville fractional derivative operator
    Bohner, Martin
    Rahman, Gauhar
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2631 - 2642
  • [4] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924
  • [5] ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Tomovski, Zivorad
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 507 - 522
  • [6] Extended Jacobi Functions via Riemann-Liouville Fractional Derivative
    Cekim, Bayram
    Erkus-Duman, Esra
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [7] A new Riemann-Liouville type fractional derivative operator and its application in generating functions
    Shadab, M.
    Khan, M. Faisal
    Lopez-Bonilla, J. Luis
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] Fractional equations of Volterra type involving a Riemann-Liouville derivative
    Jankowski, Tadeusz
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 344 - 350
  • [9] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [10] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    [J]. The European Physical Journal E, 2007, 24 : 139 - 143