On Some Properties of Riemann-Liouville Fractional Operator in Orlicz Spaces and Applications to Quadratic Integral Equations

被引:3
|
作者
Metwali, Mohamed M. A. [1 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math, Abadiyyat Damanhur, Egypt
关键词
Quadratic integral equation; fractional integral operator; compactness in measure; Orlicz spaces; 2; or?3-conditions; EXISTENCE;
D O I
10.2298/FIL2217009M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article demonstrates some properties of the Riemann-Liouville (R-L) fractional integral operator like acting, continuity, and boundedness in Orlicz spaces L phi. We apply these results to examine the solvability of the quadratic integral equation of fractional order in L phi. Because of the distinctive continuity and boundedness conditions of the operators in Orlicz spaces, we look for our concern in three situations when the generating N-functions fulfill increment ', increment 2, or increment 3-conditions. We utilize the analysis of the measure of noncompactness with the fixed point hypothesis. Our hypothesis can be effectively applied to various fractional problems.
引用
收藏
页码:6009 / 6020
页数:12
相关论文
共 50 条
  • [21] The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II
    Paulo Mendes Carvalho Neto
    Renato Fehlberg Júnior
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 1348 - 1368
  • [22] The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II
    Neto, Paulo Mendes Carvalho
    Junior, Renato Fehlberg
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (03) : 1348 - 1368
  • [23] THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL IN BOCHNER-LEBESGUE SPACES I
    Neto, Paulo mendes de carvalho
    Fehlberg Junior, Renato
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, : 3667 - 3700
  • [24] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924
  • [25] Mesoscopic fractional kinetic equations versus a Riemann-Liouville integral type
    Nigmatullin, Raoul R.
    Trujillo, Juan J.
    [J]. ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 155 - +
  • [26] Integral-Type Fractional Equations with a Proportional Riemann-Liouville Derivative
    Mlaiki, Nabil
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [27] Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays
    Abbas, Said
    Benchohra, Mouffak
    [J]. APPLIED MATHEMATICS E-NOTES, 2012, 12 : 79 - 87
  • [28] Solution of Singular Integral Equations via Riemann-Liouville Fractional Integrals
    Alqudah, Manar A.
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [29] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [30] APPROXIMATE CONTROLLABILITY OF IMPULSIVE RIEMANN-LIOUVILLE FRACTIONAL EQUATIONS IN BANACH SPACES
    Liu, Zhenhai
    Bin, Maojun
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (04) : 527 - 551