A solution method for the optimistic linear semivectorial bilevel optimization problem

被引:10
|
作者
Lv, Yibing [1 ]
Wan, Zhongping [2 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
linear semivectorial bilevel programming problem; optimal value function; solution algorithm; PENALTY;
D O I
10.1186/1029-242X-2014-164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the linear semivectorial bilevel programming problem is our concern. Based on the optimal value function reformulation approach, the linear semivectorial bilevel programming problem is transformed into a nonsmooth optimization problem, and a solution algorithm is proposed. We analyze the global and local convergence of the algorithm and give an example to illustrate the algorithm proposed in this paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A solution method for the optimistic linear semivectorial bilevel optimization problem
    Yibing Lv
    Zhongping Wan
    [J]. Journal of Inequalities and Applications, 2014
  • [2] A BOUNDING APPROACH FOR THE OPTIMISTIC OPTIMAL SOLUTION OF A CLASS OF SEMIVECTORIAL BILEVEL PROGRAMMING PROBLEM
    Lv, Yibing
    Hu, Tiesong
    Jiang, Jianlin
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 973 - 987
  • [3] A Global Solution Method for Semivectorial Bilevel Programming Problem
    Zheng, Yue
    Chen, Jiawei
    Cao, Xiaogang
    [J]. FILOMAT, 2014, 28 (08) : 1619 - 1627
  • [4] A solution method for semivectorial bilevel programming problem via penalty method
    Zheng Y.
    Wan Z.
    [J]. Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 207 - 219
  • [5] Semivectorial Bilevel Optimization Problem: Penalty Approach
    H. Bonnel
    J. Morgan
    [J]. Journal of Optimization Theory and Applications, 2006, 131 : 365 - 382
  • [6] Semivectorial bilevel optimization problem: Penalty approach
    Bonnel, H.
    Morgan, J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) : 365 - 382
  • [7] An equivalent one level optimization problem to a semivectorial bilevel problem
    Gadhi, N.
    El idrissi, M.
    [J]. POSITIVITY, 2018, 22 (01) : 261 - 274
  • [8] New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
    S. Dempe
    N. Gadhi
    A. B. Zemkoho
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 54 - 74
  • [9] An equivalent one level optimization problem to a semivectorial bilevel problem
    N. Gadhi
    M. El idrissi
    [J]. Positivity, 2018, 22 : 261 - 274
  • [10] New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
    Dempe, S.
    Gadhi, N.
    Zemkoho, A. B.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (01) : 54 - 74