An equivalent one level optimization problem to a semivectorial bilevel problem

被引:10
|
作者
Gadhi, N. [1 ]
El idrissi, M. [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Dept Math, LSO, Dhar El Mahraz, Fes, Morocco
关键词
Bilevel optimization; Convex function; Clarke subdifferential; Optimal value function; Optimality conditions; OPTIMALITY CONDITIONS;
D O I
10.1007/s11117-017-0511-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with a bilevel optimization problem , where the lower level problem is a vector optimization problem. First, we give an equivalent one level optimization problem for which the nonsmooth Mangasarian-Fromowitz constraint qualification can hold at feasible solution. Using a special scalarization function, one deduces necessary optimality condition for the initial problem.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 50 条
  • [1] An equivalent one level optimization problem to a semivectorial bilevel problem
    N. Gadhi
    M. El idrissi
    [J]. Positivity, 2018, 22 : 261 - 274
  • [2] Semivectorial Bilevel Optimization Problem: Penalty Approach
    H. Bonnel
    J. Morgan
    [J]. Journal of Optimization Theory and Applications, 2006, 131 : 365 - 382
  • [3] Semivectorial bilevel optimization problem: Penalty approach
    Bonnel, H.
    Morgan, J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) : 365 - 382
  • [4] New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
    S. Dempe
    N. Gadhi
    A. B. Zemkoho
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 54 - 74
  • [5] New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
    Dempe, S.
    Gadhi, N.
    Zemkoho, A. B.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (01) : 54 - 74
  • [6] Optimality Conditions for a Nonsmooth Semivectorial Bilevel Optimization Problem
    Dempe, S.
    Gadhi, N.
    El Idrissi, M.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (03) : 298 - 319
  • [7] A solution method for the optimistic linear semivectorial bilevel optimization problem
    Yibing Lv
    Zhongping Wan
    [J]. Journal of Inequalities and Applications, 2014
  • [8] A solution method for the optimistic linear semivectorial bilevel optimization problem
    Lv, Yibing
    Wan, Zhongping
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [9] A Global Solution Method for Semivectorial Bilevel Programming Problem
    Zheng, Yue
    Chen, Jiawei
    Cao, Xiaogang
    [J]. FILOMAT, 2014, 28 (08) : 1619 - 1627
  • [10] Neural network approach for semivectorial bilevel programming problem
    Lv, Yibing
    [J]. 2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 30 - 33