A solution method for the optimistic linear semivectorial bilevel optimization problem

被引:10
|
作者
Lv, Yibing [1 ]
Wan, Zhongping [2 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
linear semivectorial bilevel programming problem; optimal value function; solution algorithm; PENALTY;
D O I
10.1186/1029-242X-2014-164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the linear semivectorial bilevel programming problem is our concern. Based on the optimal value function reformulation approach, the linear semivectorial bilevel programming problem is transformed into a nonsmooth optimization problem, and a solution algorithm is proposed. We analyze the global and local convergence of the algorithm and give an example to illustrate the algorithm proposed in this paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Necessary optimality conditions for a semivectorial bilevel problem under a partial calmness condition
    Dempe, Stephan
    Gadhi, Nazih Abderrazzak
    El Idrissi, Mohammed
    Hamdaoui, Khadija
    [J]. OPTIMIZATION, 2021, 70 (09) : 1937 - 1957
  • [32] Solution Algorithm of the Fuzzy Fractional Bilevel Linear Programming Problem
    Amiri, Neda
    Hamidi, Farhad
    Nehi, Hassan Mishmast
    [J]. 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2015,
  • [33] Necessary optimality conditions for a semivectorial bilevel optimization problem using the kth-objective weighted-constraint approach
    Nazih Abderrazzak Gadhi
    Mohammed El idrissi
    Khadija Hamdaoui
    [J]. Positivity, 2020, 24 : 1111 - 1134
  • [34] Necessary optimality conditions for a semivectorial bilevel optimization problem using the kth-objective weighted-constraint approach
    Gadhi, Nazih Abderrazzak
    El Idrissi, Mohammed
    Hamdaoui, Khadija
    [J]. POSITIVITY, 2020, 24 (04) : 1111 - 1134
  • [35] Optimality Conditions for Optimistic Bilevel Programming Problem Using Convexifactors
    Kohli, Bhawna
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 632 - 651
  • [36] A hybrid heuristic approach with adaptive scalarization for linear semivectorial bilevel programming and its application
    Li, Hong
    Zhang, Li
    [J]. MEMETIC COMPUTING, 2022, 14 (04) : 433 - 449
  • [37] Finding an efficient solution to linear bilevel programming problem: An effective approach
    Wen, UP
    Lin, SF
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (03) : 295 - 306
  • [38] An exact penalty method for weak linear bilevel programming problem
    Zheng Y.
    Wan Z.
    Sun K.
    Zhang T.
    [J]. Journal of Applied Mathematics and Computing, 2013, 42 (1-2) : 41 - 49
  • [39] A hybrid heuristic approach with adaptive scalarization for linear semivectorial bilevel programming and its application
    Hong Li
    Li Zhang
    [J]. Memetic Computing, 2022, 14 : 433 - 449
  • [40] Solution algorithm for the bilevel linear programming formulation of the network design problem
    Zhao, MX
    Gao, ZY
    [J]. TRAFFIC AND TRANSPORTATION STUDIES, PROCEEDINGS, 2004, : 317 - 325