A solution method for the optimistic linear semivectorial bilevel optimization problem

被引:10
|
作者
Lv, Yibing [1 ]
Wan, Zhongping [2 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
linear semivectorial bilevel programming problem; optimal value function; solution algorithm; PENALTY;
D O I
10.1186/1029-242X-2014-164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the linear semivectorial bilevel programming problem is our concern. Based on the optimal value function reformulation approach, the linear semivectorial bilevel programming problem is transformed into a nonsmooth optimization problem, and a solution algorithm is proposed. We analyze the global and local convergence of the algorithm and give an example to illustrate the algorithm proposed in this paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Optimality Conditions for a Nonsmooth Semivectorial Bilevel Optimization Problem
    Dempe, S.
    Gadhi, N.
    El Idrissi, M.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (03) : 298 - 319
  • [12] A novel penalty function method for semivectorial bilevel programming problem
    Ren, Aihong
    Wang, Yuping
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (01) : 135 - 149
  • [13] Semivectorial Bilevel Optimization on Riemannian Manifolds
    Bonnel, Henri
    Todjihounde, Leonard
    Udriste, Constantin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (02) : 464 - 486
  • [14] Semivectorial Bilevel Optimization on Riemannian Manifolds
    Henri Bonnel
    Léonard Todjihoundé
    Constantin Udrişte
    [J]. Journal of Optimization Theory and Applications, 2015, 167 : 464 - 486
  • [15] Exact penalty function method for solving semivectorial bilevel programming problem
    Ren, Ai-Hong
    Wang, Yu-Ping
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2014, 34 (04): : 910 - 916
  • [16] A PSO Approach to Semivectorial Bilevel Programming: Pessimistic, Optimistic and Deceiving Solutions
    Alves, Maria Joao
    Antunes, Carlos Henggeler
    Carrasqueira, Pedro
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 599 - 606
  • [17] Numerical solution of a linear bilevel problem
    Gruzdeva, T. V.
    Petrova, E. G.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (10) : 1631 - 1641
  • [18] Numerical solution of a linear bilevel problem
    T. V. Gruzdeva
    E. G. Petrova
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 1631 - 1641
  • [19] Neural network approach for semivectorial bilevel programming problem
    Lv, Yibing
    [J]. 2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 30 - 33
  • [20] Sufficient Optimality Conditions for a Bilevel Semivectorial DC Problem
    Gadhi, Nazih Abderrazzak
    Dempe, Stephan
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (15) : 1622 - 1634