Non-parametric regression in clustered multistate current status data with informative cluster size

被引:3
|
作者
Lan, Ling [1 ]
Bandyopadhyay, Dipankar [2 ]
Datta, Somnath [3 ]
机构
[1] Augusta Univ, Dept Biostat & Epidemiol, Augusta, GA 30912 USA
[2] Virginia Commonwealth Univ, Dept Biostat, Med Coll Virginia Campus, Richmond, VA 23298 USA
[3] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
censoring; Markov; multivariate time-to-event data; state occupation probability; periodontal disease; FAILURE TIME DATA; STAGE OCCUPATION PROBABILITIES; INTEGRATED TRANSITION HAZARDS; RIGHT-CENSORED-DATA; PERIODONTAL-DISEASE; COMPETING RISKS; SURVIVAL-DATA; MODELS; INFERENCE; ENTRY;
D O I
10.1111/stan.12099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Datasets examining periodontal disease records current (disease) status information of tooth-sites, whose stochastic behavior can be attributed to a multistate system with state occupation determined at a single inspection time. In addition, the tooth-sites remain clustered within a subject, and the number of available tooth-sites may be representative of the true periodontal disease status of that subject, leading to an 'informative cluster size' scenario. To provide insulation against incorrect model assumptions, we propose a non-parametric regression framework to estimate state occupation probabilities at a given time and state exit/entry distributions, utilizing weighted monotonic regression and smoothing techniques. We demonstrate the superior performance of our proposed weighted estimators over the unweighted counterparts via a simulation study and illustrate the methodology using a dataset on periodontal disease.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 50 条
  • [41] Semiparametric marginal methods for clustered data adjusting for informative cluster size with nonignorable zeros
    Shen, Biyi
    Chen, Chixiang
    Chinchilli, Vernon M.
    Ghahramani, Nasrollah
    Zhang, Lijun
    Wang, Ming
    BIOMETRICAL JOURNAL, 2022, 64 (05) : 898 - 911
  • [42] NON-PARAMETRIC REGRESSION WITH CENSORED SURVIVAL-TIME DATA
    DABROWSKA, DM
    SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (03) : 181 - 197
  • [43] Regression Analysis of Bivariate Current Status Data Using a Multistate Model
    Kim, Yang-Jin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (03) : 462 - 475
  • [44] A model for repeated clustered data with informative cluster sizes
    Iosif, Ana-Maria
    Sampson, Allan R.
    STATISTICS IN MEDICINE, 2014, 33 (05) : 738 - 759
  • [45] Non-parametric statistical tests for informative gene selection
    Ma, JW
    Li, FH
    Liu, JF
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 697 - 702
  • [46] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    AXIOMS, 2023, 12 (04)
  • [47] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6
  • [48] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [49] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [50] Parametrically guided non-parametric regression
    Glad, IK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 649 - 668