Non-parametric regression in clustered multistate current status data with informative cluster size

被引:3
|
作者
Lan, Ling [1 ]
Bandyopadhyay, Dipankar [2 ]
Datta, Somnath [3 ]
机构
[1] Augusta Univ, Dept Biostat & Epidemiol, Augusta, GA 30912 USA
[2] Virginia Commonwealth Univ, Dept Biostat, Med Coll Virginia Campus, Richmond, VA 23298 USA
[3] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
censoring; Markov; multivariate time-to-event data; state occupation probability; periodontal disease; FAILURE TIME DATA; STAGE OCCUPATION PROBABILITIES; INTEGRATED TRANSITION HAZARDS; RIGHT-CENSORED-DATA; PERIODONTAL-DISEASE; COMPETING RISKS; SURVIVAL-DATA; MODELS; INFERENCE; ENTRY;
D O I
10.1111/stan.12099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Datasets examining periodontal disease records current (disease) status information of tooth-sites, whose stochastic behavior can be attributed to a multistate system with state occupation determined at a single inspection time. In addition, the tooth-sites remain clustered within a subject, and the number of available tooth-sites may be representative of the true periodontal disease status of that subject, leading to an 'informative cluster size' scenario. To provide insulation against incorrect model assumptions, we propose a non-parametric regression framework to estimate state occupation probabilities at a given time and state exit/entry distributions, utilizing weighted monotonic regression and smoothing techniques. We demonstrate the superior performance of our proposed weighted estimators over the unweighted counterparts via a simulation study and illustrate the methodology using a dataset on periodontal disease.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 50 条
  • [21] Joint Model of Clustered Failure Time Data with Informative Cluster Size
    Yoo, Hanna
    Lee, Jaewon
    Kim, Yang-Jin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (06) : 808 - 817
  • [22] Marginal analysis of ordinal clustered longitudinal data with informative cluster size
    Mitani, Aya A.
    Kaye, Elizabeth K.
    Nelson, Kerrie P.
    BIOMETRICS, 2019, 75 (03) : 938 - 949
  • [23] Non-parametric spatial models for clustered ordered periodontal data
    Bandyopadhyay, Dipankar
    Canale, Antonio
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (04) : 619 - 640
  • [24] Regression analysis of clustered interval-censored failure time data with cure fraction and informative cluster size
    Yang, Dian
    Sun, Nicholas
    Sun, Jianguo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (22) : 7737 - 7750
  • [25] Adjusting for informative cluster size in pseudo-value-based regression approaches with clustered time to event data
    Anyaso-Samuel, Samuel
    Datta, Somnath
    STATISTICS IN MEDICINE, 2023, 42 (13) : 2162 - 2178
  • [26] Non-parametric regression for spatially dependent data with wavelets
    Krebs, Johannes T. N.
    STATISTICS, 2018, 52 (06) : 1270 - 1308
  • [27] htestClust: A Package for Marginal Inference of Clustered Data Under Informative Cluster Size
    Gregg, Mary
    Datta, Somnath
    Lorenz, Douglas
    R JOURNAL, 2022, 14 (02): : 54 - 66
  • [28] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    STAT, 2021, 10 (01):
  • [29] Non-parametric regression methods
    Ince H.
    Computational Management Science, 2006, 3 (2) : 161 - 174
  • [30] Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks
    Koley, Tamalika
    Dewanji, Anup
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (01): : 39 - 59