Gradient-, Ensemble-, and Adjoint-Free Data-Driven Parameter Estimation

被引:4
|
作者
Goel, Ankit [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Aerosp Engn Dept, Ann Arbor, MI 48109 USA
关键词
KALMAN FILTER; STATE; SYSTEMS; IDENTIFIABILITY; IDENTIFICATION;
D O I
10.2514/1.G004158
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Nonlinear estimation methods, such as the extended Kalman filter, unscented Kalman filter, and ensemble Kalman filter, can be used for parameter estimation by viewing the unknown parameters as constant states. This paper presents an alternative approach to this problem based on retrospective cost parameter estimation (RCPE), which uses the difference between the output of the physical system and the output of the model to update the parameter estimate. The parameter update is based on a retrospective cost function, whose minimizer updates the coefficients of the estimator. The present paper extends RCPE to the case where the model depends nonlinearly on multiple unknown parameters. The main contribution is to demonstrate the need for choosing a permutation matrix that correctly associates each parameter estimate with the corresponding unknown parameter. RCPE is illustrated through several numerical examples, including the Burgers equation.
引用
收藏
页码:1743 / 1754
页数:12
相关论文
共 50 条
  • [31] Simulation Failure-Robust Bayesian Optimization for Data-Driven Parameter Estimation
    Chakrabarty, Ankush
    Bortoff, Scott A. A.
    Laughman, Christopher R. R.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 2629 - 2640
  • [32] A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes
    Priyanka, A. G.
    Monti, Antonello
    Ponci, Ferdinanda
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [33] PaToPa: A Data-Driven Parameter and Topology Joint Estimation Framework in Distribution Grids
    Yu, Jiafan
    Weng, Yang
    Rajagopal, Ram
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) : 4335 - 4347
  • [34] AN ENSEMBLE APPROACH FOR ROBUST DATA-DRIVEN PROGNOSTICS
    Hu, Chao
    Youn, Byeng D.
    Wang, Pingfeng
    Yoon, Joung Taek
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 3, PTS A AND B, 2012, : 333 - 347
  • [35] An Adjoint-Based Data-Driven Inverse-Free Iterative Feedforward Control Method
    Yang L.
    Yu K.
    Hua J.
    Lu W.
    Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2024, 146 (06):
  • [36] The application of data-driven TF analysis methods in LFM Signal Parameter Estimation
    Chen Hao
    Guo Jun-hai
    2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
  • [37] Data-driven discovery and parameter estimation of mathematical models in biological pattern formation
    Hishinuma, Hidekazu
    Takigawa-Imamura, Hisako
    Miura, Takashi
    PLoS Computational Biology, 2025, 21 (01)
  • [38] Data-driven wake model parameter estimation to analyze effects of wake superposition
    Locascio, M. J.
    Gorle, C.
    Howland, M. F.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (06)
  • [39] Data-Driven Learning and Load Ensemble Control
    Hassan, Ali
    Deka, Deepjyoti
    Chertkov, Michael
    Dvorkin, Yury
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [40] Enhancing State Estimation in Robots: A Data-Driven Approach with Differentiable Ensemble Kalman Filters
    Liu, Xiao
    Clark, Geoffrey
    Campbell, Joseph
    Zhou, Yifan
    Ben Amor, Heni
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 1947 - 1954