Simulation Failure-Robust Bayesian Optimization for Data-Driven Parameter Estimation

被引:3
|
作者
Chakrabarty, Ankush [1 ]
Bortoff, Scott A. A. [1 ]
Laughman, Christopher R. R. [1 ]
机构
[1] Mitsubishi Elect Res Labs, Dept Control & Dynam Syst, Cambridge, MA 02139 USA
关键词
Computational modeling; Data models; Calibration; Biological system modeling; Numerical models; Dynamical systems; Bayes methods; Bayesian optimization (BO); digital twin; dynamical systems; Gaussian processes; machine learning; numerical methods; simulation; system identification; BUILDING ENERGY MODELS; DIFFERENTIAL-EQUATIONS; CALIBRATION; SYSTEMS;
D O I
10.1109/TSMC.2022.3216790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in modeling and computation have resulted in high-fidelity digital twins capable of simulating the dynamics of a wide range of industrial systems. These simulation models often require calibration, or the estimation of an optimal set of parameters in some goodness-of-fit sense, to reflect a system's observed behavior. While searching over the parameter space is an inevitable part of the calibration process, simulation models are rarely designed to be valid for arbitrarily large parameter spaces. The application of existing calibration methods, therefore, often results in repeated model evaluations using parameters that can cause the simulations to be impractically slow or even result in catastrophic failure. In general, the shape of subregions in the parameter space that could result in simulation failure is unknown. In this article, we propose a novel failure-robust Bayesian optimization (FR-BO) algorithm that learns these failure regions (FRs) from online simulations and informs a Bayesian optimization algorithm to avoid FRs while optimizing model parameters. This results in acceleration of the optimizer's convergence and prevents wastage of time trying to simulate parameters with high failure probabilities. The effectiveness of the proposed FR-BO algorithm is demonstrated via a well-known benchmark example where we compare against state-of-the-art gradient matching techniques, and a practical example related to parameter estimation for digital twins of buildings.
引用
收藏
页码:2629 / 2640
页数:12
相关论文
共 50 条
  • [1] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602
  • [2] Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling
    Flouri, Dimitra
    Owen, David
    Aughwane, Rosalind
    Mufti, Nada
    Sokolska, Magdalena
    Atkinson, David
    Kendall, Giles
    Bainbridge, Alan
    Vercauteren, Tom
    David, Anna L.
    Ourselin, Sebastien
    Melbourne, Andrew
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 609 - 616
  • [3] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [4] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    [J]. Mathematical Programming, 2018, 167 : 235 - 292
  • [5] Extremum seeking controller tuning for heat pump optimization using failure-robust Bayesian optimization
    Chakrabarty, Ankush
    Burns, Daniel J.
    Guay, Martin
    Laughman, Christopher R.
    [J]. JOURNAL OF PROCESS CONTROL, 2022, 120 (86-96) : 86 - 96
  • [6] Towards Robust Data-driven Parallel Loop Scheduling Using Bayesian Optimization
    Kim, Khu-rai
    Kim, Youngjae
    Park, Sungyong
    [J]. 2019 IEEE 27TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2019), 2019, : 241 - 248
  • [7] Data-Driven Conditional Robust Optimization
    Chenreddy, Abhilash
    Bandi, Nymisha
    Delage, Erick
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [9] Cooperative Data-Driven Distributionally Robust Optimization
    Cherukuri, Ashish
    Cortes, Jorge
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4400 - 4407
  • [10] Likelihood robust optimization for data-driven problems
    Wang Z.
    Glynn P.W.
    Ye Y.
    [J]. Computational Management Science, 2016, 13 (2) : 241 - 261