Data-Driven Conditional Robust Optimization

被引:0
|
作者
Chenreddy, Abhilash [1 ,2 ]
Bandi, Nymisha [3 ]
Delage, Erick [1 ,2 ]
机构
[1] HEC Montreal, GERAD, Montreal, PQ, Canada
[2] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[3] McGill Univ, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a novel approach for data-driven decision-making under uncertainty in the presence of contextual information. Specifically, we address this problem using a new Conditional Robust Optimization (CRO) paradigm that seeks the solution of a robust optimization problem where the uncertainty set accounts for the most recent side information provided by a set of covariates. We propose an integrated framework that designs the conditional uncertainty set by jointly learning a partition in the covariate data space and simultaneously constructing region specific deep uncertainty sets for the random vector that perturbs the CRO problem. We also provide theoretical guarantees for the coverage provided by conditional uncertainty sets and for the value-at-risk performances obtained using the proposed CRO model. Finally, we use simulated and real world data to illustrate the implementation of our approach and compare it against two non-contextual robust optimization benchmark approaches to demonstrate the value of exploiting contextual information in robust optimization.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [2] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    [J]. Mathematical Programming, 2018, 167 : 235 - 292
  • [3] Cooperative Data-Driven Distributionally Robust Optimization
    Cherukuri, Ashish
    Cortes, Jorge
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4400 - 4407
  • [4] Likelihood robust optimization for data-driven problems
    Wang Z.
    Glynn P.W.
    Ye Y.
    [J]. Computational Management Science, 2016, 13 (2) : 241 - 261
  • [5] Data-driven robust optimization based on kernel learning
    Shang, Chao
    Huang, Xiaolin
    You, Fengqi
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2017, 106 : 464 - 479
  • [6] Data-driven Distributionally Robust Optimization for Edge Intelligence
    Zhang, Zhaofeng
    Lin, Sen
    Dedeoglu, Mehmet
    Ding, Kemi
    Zhang, Junshan
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 2619 - 2628
  • [7] Data-Driven Distributionally Robust Optimization for Railway Timetabling Problem
    Liu, Linyu
    Song, Shiji
    Wang, Zhuolin
    Zhang, Yuli
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 810 - 826
  • [8] Data-driven distributionally robust risk parity portfolio optimization
    Costa, Giorgio
    Kwon, Roy H.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1876 - 1911
  • [9] Data-driven stochastic robust optimization of sustainable utility system
    Wang, Qipeng
    Zhao, Liang
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [10] Data-driven robust optimization for optimal scheduling of power to methanol
    Zheng, Yi
    You, Shi
    Li, Ximei
    Bindner, Henrik W.
    Muenster, Marie
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2022, 256