Gradient-, Ensemble-, and Adjoint-Free Data-Driven Parameter Estimation

被引:4
|
作者
Goel, Ankit [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Aerosp Engn Dept, Ann Arbor, MI 48109 USA
关键词
KALMAN FILTER; STATE; SYSTEMS; IDENTIFIABILITY; IDENTIFICATION;
D O I
10.2514/1.G004158
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Nonlinear estimation methods, such as the extended Kalman filter, unscented Kalman filter, and ensemble Kalman filter, can be used for parameter estimation by viewing the unknown parameters as constant states. This paper presents an alternative approach to this problem based on retrospective cost parameter estimation (RCPE), which uses the difference between the output of the physical system and the output of the model to update the parameter estimate. The parameter update is based on a retrospective cost function, whose minimizer updates the coefficients of the estimator. The present paper extends RCPE to the case where the model depends nonlinearly on multiple unknown parameters. The main contribution is to demonstrate the need for choosing a permutation matrix that correctly associates each parameter estimate with the corresponding unknown parameter. RCPE is illustrated through several numerical examples, including the Burgers equation.
引用
收藏
页码:1743 / 1754
页数:12
相关论文
共 50 条
  • [41] A data-driven localization method for ensemble based data assimilation
    Nino-Ruiz, Elias D.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51 (51)
  • [42] Estimation Fusion with Data-driven Communication
    Bian, Xiaolei
    Li, X. Rong
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1410 - 1417
  • [43] Data-driven deep density estimation
    Puchert, Patrik
    Hermosilla, Pedro
    Ritschel, Tobias
    Ropinski, Timo
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16773 - 16807
  • [44] Data-driven predictive modeling of Hubble parameter
    Salti, Mehmet
    Ciger, Emel
    Kangal, Evrim Ersin
    Zengin, Bilgin
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [45] Data-driven Estimation of Sinusoid Frequencies
    Izacard, Gautier
    Mohan, Sreyas
    Fernandez-Granda, Carlos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Algorithms for data-driven ASR parameter quantization
    Filali, Karim
    Li, Xiao
    Bilmes, Jeff
    COMPUTER SPEECH AND LANGUAGE, 2006, 20 (04): : 625 - 643
  • [47] Data-Driven Parameter Estimation of Lumped-Element Models via Automatic Differentiation
    Mezza, Alessandro Ilic
    Giampiccolo, Riccardo
    Bernardini, Alberto
    IEEE ACCESS, 2023, 11 : 143601 - 143615
  • [48] An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
    Armstrong, Matthew J.
    Beris, Antony N.
    Wagner, Norman J.
    AICHE JOURNAL, 2017, 63 (06) : 1937 - 1958
  • [49] Data-Driven Learning for Resilient Synchronization and Parameter Estimation of Heterogeneous Nonlinear Multiagent Systems
    Yang, Wang
    Dong, Jiuxiang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 21 (04) : 1 - 12
  • [50] Data-driven deep density estimation
    Patrik Puchert
    Pedro Hermosilla
    Tobias Ritschel
    Timo Ropinski
    Neural Computing and Applications, 2021, 33 : 16773 - 16807