Gradient-, Ensemble-, and Adjoint-Free Data-Driven Parameter Estimation

被引:4
|
作者
Goel, Ankit [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Aerosp Engn Dept, Ann Arbor, MI 48109 USA
关键词
KALMAN FILTER; STATE; SYSTEMS; IDENTIFIABILITY; IDENTIFICATION;
D O I
10.2514/1.G004158
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Nonlinear estimation methods, such as the extended Kalman filter, unscented Kalman filter, and ensemble Kalman filter, can be used for parameter estimation by viewing the unknown parameters as constant states. This paper presents an alternative approach to this problem based on retrospective cost parameter estimation (RCPE), which uses the difference between the output of the physical system and the output of the model to update the parameter estimate. The parameter update is based on a retrospective cost function, whose minimizer updates the coefficients of the estimator. The present paper extends RCPE to the case where the model depends nonlinearly on multiple unknown parameters. The main contribution is to demonstrate the need for choosing a permutation matrix that correctly associates each parameter estimate with the corresponding unknown parameter. RCPE is illustrated through several numerical examples, including the Burgers equation.
引用
收藏
页码:1743 / 1754
页数:12
相关论文
共 50 条
  • [1] Ensemble optimal interpolation for adjoint-free biogeochemical data assimilation
    Mattern, Jann Paul
    Edwards, Christopher A.
    [J]. PLOS ONE, 2023, 18 (09):
  • [2] Adjoint-Free Variational Data Assimilation into a Regional Wave Model
    Panteleev, Gleb
    Yaremchuk, Max
    Rogers, W. Erick
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (07) : 1386 - 1399
  • [3] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [4] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    [J]. ENTROPY, 2019, 21 (06)
  • [5] Data-driven modeling and parameter estimation of nonlinear systems
    Kaushal Kumar
    [J]. The European Physical Journal B, 2023, 96
  • [6] Data-driven modeling and parameter estimation of nonlinear systems
    Kumar, Kaushal
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (07):
  • [7] Modeling and Data-Driven Parameter Estimation for Woven Fabrics
    Clyde, David
    Teran, Joseph
    Tamstorf, Rasmus
    [J]. ACM SIGGRAPH / EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION (SCA 2017), 2017,
  • [8] An Adjoint-Free Alternating Direction Method for Four-Dimensional Variational Data Assimilation With Multiple Parameter Tikhonov Regularization
    Tian, Xiangjun
    Han, Rui
    Zhang, Hongqin
    [J]. EARTH AND SPACE SCIENCE, 2020, 7 (11)
  • [9] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    [J]. MATHEMATICAL AND COMPUTATIONAL FORESTRY & NATURAL-RESOURCE SCIENCES, 2023, 15 (01): : 7 - 16
  • [10] Data-driven parameter estimation for optimal connected cruise control
    Ge, Jin I.
    Orosz, Gabor
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,