Modeling and Data-Driven Parameter Estimation for Woven Fabrics

被引:31
|
作者
Clyde, David [1 ]
Teran, Joseph [1 ]
Tamstorf, Rasmus [2 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[2] Walt Disney Animat Studios, Burbank, CA USA
关键词
constitutive modeling; orthotropy; cloth; data fitting; BEHAVIOR;
D O I
10.1145/3099564.3099577
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate estimation of mechanical parameters for simulation of woven fabrics is essential in many fields. To facilitate this we first present a new orthotropic hyperelastic constitutive model for woven fabrics. Next, we design an experimental protocol for characterizing real fabrics based on commercially available tests. Finally, we create a method for accurately fitting the material parameters to the experimental data. The last step is accomplished by solving inverse problems based on a Catmull-Clark subdivision finite element discretization of the Kirchhoff-Love equations for thin shells. Using this approach we are able to reproduce the fully nonlinear behavior corresponding to the captured data with a small number of parameters while maintaining all fundamental invariants from continuum mechanics. The resulting constitutive model can be used with any discretization (e.g., simple triangle meshes) and not just subdivision finite elements. We illustrate the entire process with results for five types of fabric and compare photo reference of the real fabrics to the simulated equivalents.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven modeling and parameter estimation of nonlinear systems
    Kaushal Kumar
    The European Physical Journal B, 2023, 96
  • [2] Data-driven modeling and parameter estimation of nonlinear systems
    Kumar, Kaushal
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (07):
  • [3] Data-driven predictive modeling of Hubble parameter
    Salti, Mehmet
    Ciger, Emel
    Kangal, Evrim Ersin
    Zengin, Bilgin
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [4] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [5] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    ENTROPY, 2019, 21 (06)
  • [6] Data-Driven Modeling for Energy Consumption Estimation
    Yang, Chunsheng
    Cheng, Qiangqiang
    Lai, Pinhua
    Liu, Jie
    Guo, Hongyu
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 2: APPLICATIONS, 2018, : 1057 - 1068
  • [7] Data-Driven Parameter Selection and Modeling for Concrete Carbonation
    Duan, Kangkang
    Cao, Shuangyin
    MATERIALS, 2022, 15 (09)
  • [8] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    MATHEMATICAL AND COMPUTATIONAL FORESTRY & NATURAL-RESOURCE SCIENCES, 2023, 15 (01): : 7 - 16
  • [9] Data-driven parameter estimation for optimal connected cruise control
    Ge, Jin I.
    Orosz, Gabor
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [10] Data-driven parameter selection for activity estimation in nuclear spectroscopy
    Trigano, Tom
    Sepulcre, Yann
    SIGNAL PROCESSING, 2018, 151 : 99 - 106