Modeling and Data-Driven Parameter Estimation for Woven Fabrics

被引:31
|
作者
Clyde, David [1 ]
Teran, Joseph [1 ]
Tamstorf, Rasmus [2 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[2] Walt Disney Animat Studios, Burbank, CA USA
关键词
constitutive modeling; orthotropy; cloth; data fitting; BEHAVIOR;
D O I
10.1145/3099564.3099577
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate estimation of mechanical parameters for simulation of woven fabrics is essential in many fields. To facilitate this we first present a new orthotropic hyperelastic constitutive model for woven fabrics. Next, we design an experimental protocol for characterizing real fabrics based on commercially available tests. Finally, we create a method for accurately fitting the material parameters to the experimental data. The last step is accomplished by solving inverse problems based on a Catmull-Clark subdivision finite element discretization of the Kirchhoff-Love equations for thin shells. Using this approach we are able to reproduce the fully nonlinear behavior corresponding to the captured data with a small number of parameters while maintaining all fundamental invariants from continuum mechanics. The resulting constitutive model can be used with any discretization (e.g., simple triangle meshes) and not just subdivision finite elements. We illustrate the entire process with results for five types of fabric and compare photo reference of the real fabrics to the simulated equivalents.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-Driven Parameter Estimation of Steady-State Load Models
    Tushar
    Pandey, Shikhar
    Srivastava, Anurag K.
    Markham, Penn
    Bhatt, Navin
    Patel, Mahendra
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2016,
  • [22] A novel data-driven model based parameter estimation of nonlinear systems
    Ge, Xiaobiao
    Luo, Zhong
    Ma, Ying
    Liu, Haopeng
    Zhu, Yunpeng
    JOURNAL OF SOUND AND VIBRATION, 2019, 453 : 188 - 200
  • [23] Estimation of effective connectivity via data-driven neural modeling
    Freestone, Dean R.
    Karoly, Philippa J.
    Nesic, Dragan
    Aram, Parham
    Cook, Mark J.
    Grayden, David B.
    FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [24] The Estimation of the Higher Heating Value of Biochar by Data-Driven Modeling
    Chen, Jiefeng
    Ding, Lisha
    Wang, Pengyu
    Zhang, Weijin
    Li, Jie
    Mohamed, Badr A.
    Chen, Jie
    Leng, Songqi
    Liu, Tonggui
    Leng, Lijian
    Zhou, Wenguang
    JOURNAL OF RENEWABLE MATERIALS, 2022, 10 (06) : 1555 - 1574
  • [25] Data-driven modeling of bifurcation systems by learning the bifurcation parameter generalization
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR DYNAMICS, 2024, : 1163 - 1174
  • [26] Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method
    Hou, Dehao
    Ma, Wenjun
    Hu, Lingyan
    Huang, Yushui
    Yu, Yunjun
    Wan, Xiaofeng
    Wu, Xiaolong
    Li, Xi
    ATMOSPHERE, 2023, 14 (09)
  • [27] Data-Driven Covariance Estimation
    Rogers, John T., II
    Ball, John E.
    Gurbuz, Ali C.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS & TECHNOLOGY (PAST), 2022,
  • [28] Data-Driven Topology Estimation
    Weng, Yang
    Faloutsos, Christos
    Ilic, Marija D.
    2014 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2014, : 560 - 565
  • [29] Simulation Failure-Robust Bayesian Optimization for Data-Driven Parameter Estimation
    Chakrabarty, Ankush
    Bortoff, Scott A. A.
    Laughman, Christopher R. R.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 2629 - 2640
  • [30] A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes
    Priyanka, A. G.
    Monti, Antonello
    Ponci, Ferdinanda
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,