Data-Driven Parameter Estimation of Steady-State Load Models

被引:0
|
作者
Tushar [1 ]
Pandey, Shikhar [1 ]
Srivastava, Anurag K. [1 ]
Markham, Penn [2 ]
Bhatt, Navin [2 ]
Patel, Mahendra [2 ]
机构
[1] Washington State Univ, Pullman, WA 99163 USA
[2] Elect Power Res Inst, Knoxville, TN 37932 USA
关键词
Adaptive search-based algorithm; load models; least square (LS); recursive least square (RLS); ZIP model; parameter estimation;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Several techniques have been developed to estimate the load parameters in power systems. Most of the algorithms mainly focus on estimating the parameters for offline studies. With ongoing smart grid development, high-resolution data at fast rates are available to allow load modeling in real-time. This paper addresses the challenges in online estimation of the load parameters using Phasor Measurement Unit (PMU) data. A novel adaptive search-based algorithm to estimate load model parameters is presented here. In this paper, Z (constant impedance), I (constant current) and P (constant power), ZIP load model is derived. Simulation results for ZIP parameter estimation are presented using the IEEE 14bus system. Simulation results demonstrate the accurate estimation of the ZIP load model. ZIP parameters are also estimated using the industrial data and the voltage stability limits are computed using actual data to show the impact of ZIP parameters versus the traditional constant power load model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Online Estimation of Steady-State Load Models Considering Data Anomalies
    Tushar
    Pandey, Shikhar
    Srivastava, Anurag K.
    Markham, Penn
    Patel, Mahendra
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (01) : 712 - 721
  • [2] Bounding Regression Errors in Data-Driven Power Grid Steady-State Models
    Liu, Yuxiao
    Xu, Bolun
    Botterud, Audun
    Zhang, Ning
    Kang, Chongqing
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 1023 - 1033
  • [3] Preprocessing of Raw Data for Developing Steady-State Data-Driven Models for Optimizing Compressor Stations
    Xenos, Dionysios P.
    Thornhill, Nina F.
    Cicciotti, Matteo
    Bouaswaig, Ala E. F.
    [J]. 2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 438 - 443
  • [4] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [5] NEURAL NETWORKS AND DATA-DRIVEN SURROGATE MODELS FOR SIMULATION OF STEADY-STATE FRACTURE GROWTH
    Kalyuzhnyuk, A., V
    Lapin, R. L.
    Murachev, A. S.
    Osokina, A. E.
    Sevostianov, A., I
    Tsvetkov, D., V
    [J]. MATERIALS PHYSICS AND MECHANICS, 2019, 42 (03): : 351 - 358
  • [6] Nonlinear parameter estimation of steady-state induction machine models
    Marcus, A
    Lima, N
    Jacobina, CB
    deSouza, EB
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1997, 44 (03) : 390 - 397
  • [7] A Balancing Act: Parameter Estimation for Biological Models with Steady-State Measurements
    Mizera, Andrzej
    Pang, Jun
    Sauter, Thomas
    Trairatphisan, Panuwat
    [J]. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, 2013, 8130 : 253 - +
  • [8] A Design of Data-Driven PID Controller Based on Steady-State Performance
    Ohnishi, Yoshihiro
    Kinoshita, Takuya
    Inoue, Akinori
    Yamamoto, Toru
    Shah, Sirish L.
    [J]. PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 7 - 11
  • [9] Data-Driven Static Load Model Parameter Estimation with Confidence Factor
    Banerjee, P.
    Rizvi, Syed M. H.
    Srivastava, Anurag K.
    Markham, Penn
    Patel, Mahendra
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2018,
  • [10] An open software architecture for steady-state data reconciliation and parameter estimation
    Benqlilou, C
    Graells, M
    Espuña, A
    Puigjaner, L
    [J]. EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 12, 2002, 10 : 853 - 858