Strictly monotone and smooth nonparametric regression for two or more variables

被引:20
|
作者
Dette, Holger [1 ]
Scheder, Regine [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, DE-44780 Bochum, Germany
关键词
isotonic regression; multivariate nonparametric regression; nondecreasing rearrangement; order restricted inference;
D O I
10.1002/cjs.5550340401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors propose a new monotone nonparametric estimate for a regression function of two or more variables. Their method consists in applying successively one-dimensional isotonization procedures on an initial, unconstrained nonparametric regression estimate. In the case of a strictly monotone regression function, they show that the new estimate and the initial one are first-order asymptotic equivalent; they also establish asymptotic normality of an appropriate standardization of the new estimate. In addition, they show that if the regression function is not monotone in one of its arguments, the new estimate and the initial one have approximately the same L-p-norm. They illustrate their approach by means of a simulation study, and two data examples are analyzed.
引用
收藏
页码:535 / 561
页数:27
相关论文
共 50 条
  • [31] Parametric and nonparametric regression in the presence of endogenous control variables
    Froelich, Markus
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2008, 76 (02) : 214 - 227
  • [32] Bandwidth selection for nonparametric regression with errors-in-variables
    Dong, Hao
    Otsu, Taisuke
    Taylor, Luke
    [J]. ECONOMETRIC REVIEWS, 2023, 42 (04) : 393 - 419
  • [33] Nonparametric relative error regression for spatial random variables
    Attouch, Mohammed
    Laksaci, Ali
    Messabihi, Nafissa
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 987 - 1008
  • [34] Nonparametric instrumental variables estimation of a quantile regression model
    Horowitz, Joel L.
    Lee, Sokbae
    [J]. ECONOMETRICA, 2007, 75 (04) : 1191 - 1208
  • [35] Nonparametric relative error regression for spatial random variables
    Mohammed Attouch
    Ali Laksaci
    Nafissa Messabihi
    [J]. Statistical Papers, 2017, 58 : 987 - 1008
  • [36] NONPARAMETRIC-ESTIMATION OF SMOOTH REGRESSION-FUNCTIONS
    NEMIROVSKIY, AS
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1985, 23 (06): : 1 - 11
  • [37] Two tests for heteroscedasticity in nonparametric regression
    Francisco-Fernandez, Mario
    Vilar-Fernandez, Juan M.
    [J]. COMPUTATIONAL STATISTICS, 2009, 24 (01) : 145 - 163
  • [38] Nonparametric comparison of two regression functions
    Srihera, Pimtong
    Stute, Winfried
    [J]. PROCEEDINGS OF THE 11TH ANNUAL CONFERENCE OF ASIA PACIFIC DECISION SCIENCES INSTITUTE: INNOVATION & SERVICE EXCELLENCE FOR COMPETITIVE ADVANTAGE IN THE GLOBAL ENVIRONMENT, 2006, : 350 - +
  • [39] Two tests for heteroscedasticity in nonparametric regression
    Mario Francisco-Fernández
    Juan M. Vilar-Fernández
    [J]. Computational Statistics, 2009, 24 : 145 - 163
  • [40] Minimax theorems involving two functions and strictly monotone transformations of their values
    Jin C.-Y.
    Cheng C.-Z.
    Jin Y.-T.
    Li J.
    [J]. Acta Mathematicae Applicatae Sinica, 2006, 22 (4) : 607 - 614