Nonparametric relative error regression for spatial random variables

被引:15
|
作者
Attouch, Mohammed [1 ]
Laksaci, Ali [1 ]
Messabihi, Nafissa [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Stat & ProcStochast, Agence Thmat Rech Sci & Technol, BP 89, Sidi Bel Abbes 22000, Algeria
关键词
Kernel method; Relative error; Non-parametric estimation; Associated variable; PREDICTION;
D O I
10.1007/s00362-015-0735-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let , be a -valued measurable strictly stationary spatial process. We consider the problem of estimating the regression function of given . We construct an alternative kernel estimate of the regression function based on the minimization of the mean squared relative error. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of this estimator are obtained. Its finite-sample performance is compared with a standard kernel regression estimator via a Monte Carlo study and real data example.
引用
收藏
页码:987 / 1008
页数:22
相关论文
共 50 条
  • [1] Nonparametric relative error regression for spatial random variables
    Mohammed Attouch
    Ali Laksaci
    Nafissa Messabihi
    [J]. Statistical Papers, 2017, 58 : 987 - 1008
  • [2] Nonparametric relative regression for associated random variables
    Mechab W.
    Laksaci A.
    [J]. METRON, 2016, 74 (1) : 75 - 97
  • [3] Nonparametric regression for mixing functional random variables
    Ferraty, F
    Goia, A
    Vieu, P
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (03) : 217 - 220
  • [4] Nonparametric relative error regression for functional time series data under random censorship
    Fetitah, Omar
    Attouch, Mohammed K.
    Khardani, Salah
    Righi, Ali
    [J]. CHILEAN JOURNAL OF STATISTICS, 2021, 12 (02): : 145 - 170
  • [5] Nonparametric spatial regression with spatial autoregressive error structure
    Wang, Hongxia
    Lin, Jinguan
    Wang, Jinde
    [J]. STATISTICS, 2016, 50 (01) : 60 - 75
  • [6] Relative error prediction in nonparametric deconvolution regression model
    Thiam, Baba
    [J]. STATISTICA NEERLANDICA, 2019, 73 (01) : 63 - 77
  • [7] Nonparametric relative regression under random censorship model
    Salah, Khardani
    Yousri, Slaoui
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 151 : 116 - 122
  • [8] Nonparametric estimation of the relative error in functional regression and censored data
    Mechab, Boubaker
    Hamidi, Nesrine
    Benaissa, Samir
    [J]. CHILEAN JOURNAL OF STATISTICS, 2019, 10 (02): : 177 - 195
  • [9] Discriminant Analysis for fuzzy random variables based on nonparametric regression
    Colubi, Ana
    Gil, M. A.
    Gonzalez-Rodriguez, Gil
    Trutschnig, Wolfgang
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1428 - 1432
  • [10] Nonparametric estimation of the relative error regression for twice censored and dependent data
    Benzamouche, Sabrina
    Said, Elias Ould
    Sadki, Ourida
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,