Strictly monotone and smooth nonparametric regression for two or more variables

被引:20
|
作者
Dette, Holger [1 ]
Scheder, Regine [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, DE-44780 Bochum, Germany
关键词
isotonic regression; multivariate nonparametric regression; nondecreasing rearrangement; order restricted inference;
D O I
10.1002/cjs.5550340401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors propose a new monotone nonparametric estimate for a regression function of two or more variables. Their method consists in applying successively one-dimensional isotonization procedures on an initial, unconstrained nonparametric regression estimate. In the case of a strictly monotone regression function, they show that the new estimate and the initial one are first-order asymptotic equivalent; they also establish asymptotic normality of an appropriate standardization of the new estimate. In addition, they show that if the regression function is not monotone in one of its arguments, the new estimate and the initial one have approximately the same L-p-norm. They illustrate their approach by means of a simulation study, and two data examples are analyzed.
引用
收藏
页码:535 / 561
页数:27
相关论文
共 50 条
  • [41] TWO SEQUENCES OF OPERATOR MONOTONE FUNCTIONS UNDER STRICTLY CHAOTIC ORDER
    Jiang, Jianfei
    Zuo, Hongliang
    Wang, Meiyan
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (02): : 371 - 380
  • [42] Robust Nonparametric Estimation of Monotone Regression Functions with Interval-Censored Observations
    Zhang, Ying
    Cheng, Gang
    Tu, Wanzhu
    [J]. BIOMETRICS, 2016, 72 (03) : 720 - 730
  • [43] Minimax Theorems Involving Two Functions and Strictly Monotone Transformations of Their Values
    Cai-yun Jin Cao-zong Cheng Yong-tao Jin Jing Li Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2006, (04) : 607 - 614
  • [44] Testing the significance of categorical predictor variables in nonparametric regression models
    Racine, Jeffery S.
    Hart, Jeffrey
    Li, Qi
    [J]. ECONOMETRIC REVIEWS, 2006, 25 (04) : 523 - 544
  • [45] Nonparametric regression estimation in the heteroscedastic errors-in-variables problem
    Delaigle, Aurore
    Meister, Alexander
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1416 - 1426
  • [46] Adaptive estimation in a nonparametric regression model with errors-in-variables
    Comte, F.
    Taupin, M.-L.
    [J]. STATISTICA SINICA, 2007, 17 (03) : 1065 - 1090
  • [47] Discriminant Analysis for fuzzy random variables based on nonparametric regression
    Colubi, Ana
    Gil, M. A.
    Gonzalez-Rodriguez, Gil
    Trutschnig, Wolfgang
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1428 - 1432
  • [48] A simple estimator for partial linear regression with endogenous nonparametric variables
    Delgado, Michael S.
    Parmeter, Christopher F.
    [J]. ECONOMICS LETTERS, 2014, 124 (01) : 100 - 103
  • [49] Nonparametric regression for dependent data in the errors-in-variables problem
    Honda, Toshio
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3409 - 3424
  • [50] Uniform confidence bands for nonparametric errors-in-variables regression
    Kato, Kengo
    Sasaki, Yuya
    [J]. JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 516 - 555