Plasmon-assisted Forster resonance energy transfer at the single-molecule level in the moderate quenching regime

被引:57
|
作者
Bohlen, J. [1 ,2 ,3 ,4 ]
Cuartero-Gonzalez, A. [5 ]
Pibiri, E. [1 ,2 ,3 ]
Ruhlandt, D. [6 ]
Fernandez-Dominguez, A., I [5 ]
Tinnefeld, P. [4 ]
Acuna, G. P. [1 ,2 ,3 ,7 ]
机构
[1] Braunschweig Univ Technol, Inst Phys & Theoret Chem NanoBioSci, Braunschweig, Germany
[2] Braunschweig Univ Technol, Braunschweig Integrated Ctr Syst Biol BRICS, Braunschweig, Germany
[3] Braunschweig Univ Technol, Lab Emerging Nanometrol LENA, Braunschweig, Germany
[4] Ludwig Maximilians Univ Munchen, Fac Chem & Pharm, NanoBioSci, Munich, Germany
[5] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada & Condensed Matter P, E-28049 Madrid, Spain
[6] Georg August Univ Gottingen, Inst Phys Biophys 3, Gottingen, Germany
[7] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
基金
欧盟第七框架计划; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
FLUORESCENCE ENHANCEMENT; DISTANCE DEPENDENCE; OPTICAL-PROPERTIES; DNA; LIGHT; FRET; NANOANTENNAS;
D O I
10.1039/c9nr01204d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic nanoparticles were shown to affect Forster energy transfer between fluorophore pairs. However, to date, the net plasmonic effect on FRET is still under dispute, with experiments showing efficiency enhancement and reduction. This controversy is due to the challenges involved in the precise positioning of FRET pairs in the near field of a metallic nanostructure, as well as in the accurate characterization of the plasmonic impact on the FRET mechanism. Here, we use the DNA origami technique to place a FRET pair 10 nm away from the surface of gold nanoparticles with sizes ranging from 5 to 20 nm. In this configuration, the fluorophores experience only moderate plasmonic quenching. We use the acceptor bleaching approach to extract the FRET rate constant and efficiency on immobilized single FRET pairs based solely on the donor lifetime. This technique does not require a posteriori correction factors neither a priori knowledge of the acceptor quantum yield, and importantly, it is performed in a single spectral channel. Our results allow us to conclude that, despite the plasmon-assisted Purcell enhancement experienced by donor and acceptor partners, the gold nanoparticles in our samples have a negligible effect on the FRET rate, which in turns yields a reduction of the transfer efficiency.
引用
收藏
页码:7674 / 7681
页数:8
相关论文
共 50 条
  • [41] The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Forster resonance energy transfer spectroscopy study
    Manz, Christoph
    Kobitski, Andrei Yu.
    Samanta, Ayan
    Jaeschke, Andres
    Nienhaus, G. Ulrich
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (12):
  • [42] Cylindrical channel plasmon resonance for single-molecule sensing
    Terranova, Brandon
    Bellingham, Alyssa A.
    Herbert, Sylvia
    Fontecchio, Adam K.
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES IV, 2014, 8994
  • [43] Single-Molecule Metal-Induced Energy Transfer (smMIET): Resolving Nanometer Distances at the Single-Molecule Level
    Karedla, Narain
    Chizhik, Alexey I.
    Gregor, Ingo
    Chizhik, Anna M.
    Schulz, Olaf
    Enderlein, Joerg
    CHEMPHYSCHEM, 2014, 15 (04) : 705 - 711
  • [44] Long-Range Single-Molecule Forster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides
    Baibakov, Mikhail
    Patra, Satyajit
    Claude, Jean-Benoit
    Wenger, Jerome
    ACS OMEGA, 2020, 5 (12): : 6947 - 6955
  • [45] Extending Single-Molecule Forster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides
    Baibakov, Mikhail
    Patra, Satyajit
    Claude, Jean-Benoit
    Moreau, Antonin
    Lumeau, Julien
    Wenger, Jerome
    ACS NANO, 2019, 13 (07) : 8469 - 8480
  • [46] RNA folding dynamics by single-molecule fluorescence resonance energy transfer
    Zhao, Rui
    Rueda, David
    METHODS, 2009, 49 (02) : 112 - 117
  • [47] Single-molecule fluorescence resonance energy transfer and its biomedical applications
    Li, Chen-chen
    Li, Ying
    Zhang, Yan
    Zhang, Chun-yang
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 122
  • [48] Three-color single-molecule fluorescence resonance energy transfer
    Clamme, JP
    Deniz, AA
    CHEMPHYSCHEM, 2005, 6 (01) : 74 - 77
  • [49] Single-molecule quantum-dot fluorescence resonance energy transfer
    Hohng, S
    Ha, T
    CHEMPHYSCHEM, 2005, 6 (05) : 956 - 960
  • [50] Single Molecule Forster Resonance Energy Transfer Studies of the Fc Region of a Human Antibody
    Southern, Cathrine A.
    Kelliher, Michael T.
    Gemoules, Madeline E.
    Piraino, Mark S.
    Jacks, Ramiah D.
    Hall, Ashley E.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 71A - 71A