Plasmon-assisted Forster resonance energy transfer at the single-molecule level in the moderate quenching regime

被引:57
|
作者
Bohlen, J. [1 ,2 ,3 ,4 ]
Cuartero-Gonzalez, A. [5 ]
Pibiri, E. [1 ,2 ,3 ]
Ruhlandt, D. [6 ]
Fernandez-Dominguez, A., I [5 ]
Tinnefeld, P. [4 ]
Acuna, G. P. [1 ,2 ,3 ,7 ]
机构
[1] Braunschweig Univ Technol, Inst Phys & Theoret Chem NanoBioSci, Braunschweig, Germany
[2] Braunschweig Univ Technol, Braunschweig Integrated Ctr Syst Biol BRICS, Braunschweig, Germany
[3] Braunschweig Univ Technol, Lab Emerging Nanometrol LENA, Braunschweig, Germany
[4] Ludwig Maximilians Univ Munchen, Fac Chem & Pharm, NanoBioSci, Munich, Germany
[5] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada & Condensed Matter P, E-28049 Madrid, Spain
[6] Georg August Univ Gottingen, Inst Phys Biophys 3, Gottingen, Germany
[7] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
基金
欧盟第七框架计划; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
FLUORESCENCE ENHANCEMENT; DISTANCE DEPENDENCE; OPTICAL-PROPERTIES; DNA; LIGHT; FRET; NANOANTENNAS;
D O I
10.1039/c9nr01204d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic nanoparticles were shown to affect Forster energy transfer between fluorophore pairs. However, to date, the net plasmonic effect on FRET is still under dispute, with experiments showing efficiency enhancement and reduction. This controversy is due to the challenges involved in the precise positioning of FRET pairs in the near field of a metallic nanostructure, as well as in the accurate characterization of the plasmonic impact on the FRET mechanism. Here, we use the DNA origami technique to place a FRET pair 10 nm away from the surface of gold nanoparticles with sizes ranging from 5 to 20 nm. In this configuration, the fluorophores experience only moderate plasmonic quenching. We use the acceptor bleaching approach to extract the FRET rate constant and efficiency on immobilized single FRET pairs based solely on the donor lifetime. This technique does not require a posteriori correction factors neither a priori knowledge of the acceptor quantum yield, and importantly, it is performed in a single spectral channel. Our results allow us to conclude that, despite the plasmon-assisted Purcell enhancement experienced by donor and acceptor partners, the gold nanoparticles in our samples have a negligible effect on the FRET rate, which in turns yields a reduction of the transfer efficiency.
引用
收藏
页码:7674 / 7681
页数:8
相关论文
共 50 条
  • [31] Intramolecular Forster energy transfer in a dendritic system at the single molecule level
    Gronheid, R
    Hofkens, J
    Köhn, F
    Weil, T
    Reuther, E
    Müllen, K
    De Schryver, FC
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (11) : 2418 - 2419
  • [32] Plasmon-Controlled Forster Resonance Energy Transfer
    Zhao, Lei
    Ming, Tian
    Shao, Lei
    Chen, Huanjun
    Wang, Jianfang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 8287 - 8296
  • [33] Plasmon-Assisted Energy Transfer near Coated Metal Cylinders
    Karanikolas, Vasilios D.
    Marocico, Cristian A.
    Bradley, A. Louise
    2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,
  • [34] Nanosecond dynamics of single-molecule fluorescence resonance energy transfer
    Ariunbold, GO
    Agarwal, GS
    Wang, Z
    Scully, MO
    Walther, H
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (13): : 2402 - 2404
  • [35] Single-molecule fluorescence resonance energy transfer in molecular biology
    Sasmal, Dibyendu K.
    Pulido, Laura E.
    Kasal, Shan
    Huang, Jun
    NANOSCALE, 2016, 8 (48) : 19928 - 19944
  • [36] Catalytic single-molecule Forster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging
    Zhang, Qian
    Li, Chen-chen
    Ma, Fei
    Luo, Xiliang
    Zhang, Chun-yang
    BIOSENSORS & BIOELECTRONICS, 2022, 213
  • [37] Examinations of Antibody Structure using Single Molecule Forster Resonance Energy Transfer
    Southern, Cathrine A.
    Kelliher, Michael T.
    Agne, Ian D.
    Timoshevskaya, Irina
    Mueller, Kelly A.
    Jacks, Ramiah D.
    Hall, Ashley E.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 445A - 445A
  • [38] Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Forster Resonance Energy Transfer Spectroscopy
    Meiser, Nathalie
    Fuks, Christin
    Hengesbach, Martin
    MOLECULES, 2020, 25 (09):
  • [39] Photobleaching Lifetimes of Cyanine Fluorophores Used for Single-Molecule Forster Resonance Energy Transfer in the Presence of Various Photoprotection Systems
    Cooper, David
    Uhm, Heui
    Tauzin, Lawrence J.
    Poddar, Nitesh
    Landes, Christy F.
    CHEMBIOCHEM, 2013, 14 (09) : 1075 - 1080
  • [40] Submillisecond Conformational Transitions of Short Single-Stranded DNA Lattices by Photon Correlation Single-Molecule Forster Resonance Energy Transfer
    Israels, Brett
    Albrecht, Claire S.
    Dang, Anson
    Barney, Megan
    von Hippel, Peter H.
    Marcus, Andrew H.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (33): : 9426 - 9440