DEEP LEARNING PARTICLE DETECTION FOR PROBABILISTIC TRACKING IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Ritter, C. [1 ]
Wollmann, T. [1 ]
Lee, J-Y [2 ,3 ]
Bartenschlager, R. [2 ,3 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, BioQuant, IPMB, Biomed Comp Vis Grp, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Infect Dis, Mol Virol, Neuenheimer Feld 344, D-69120 Heidelberg, Germany
[3] German Ctr Infect Res, Heidelberg Partner Site, Heidelberg, Germany
关键词
Fluorescence microscopy; Particle tracking; Deep Learning; Hyperparameter optimization;
D O I
10.1109/isbi45749.2020.9098598
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic tracking of subcellular structures displayed as small spots in fluorescence microscopy images is important to quantify biological processes. We have developed a novel approach for tracking multiple fluorescent particles based on deep learning and Bayesian sequential estimation. Our approach combines a convolutional neural network for particle detection with probabilistic data association. We identified data association parameters that depend on the detection result, and automatically determine these parameters by hyperparameter optimization.We evaluated our approach based on image sequences of the Particle Tracking Challenge as well as live cell fluorescence microscopy data of hepatitis C virus proteins. It turned out that the new approach generally outperforms existing methods.
引用
收藏
页码:977 / 980
页数:4
相关论文
共 50 条
  • [1] DEEP LEARNING METHOD FOR PROBABILISTIC PARTICLE DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY IMAGES
    Spilger, Roman
    Lee, Ji Young
    Minh Tu Pham
    Bartenschlager, Ralf
    Rohr, Karl
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [2] DEEP LEARNING FOR PARTICLE DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY IMAGES
    Ritter, C.
    Spilger, R.
    Lee, J-Y
    Bartenschlager, R.
    Rohr, K.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 873 - 876
  • [3] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    Medical Image Analysis, 2021, 72
  • [4] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    MEDICAL IMAGE ANALYSIS, 2021, 72
  • [5] Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning
    Spilger, Roman
    Wollmann, Thomas
    Qiang, Yu
    Imle, Andrea
    Lee, Ji Young
    Mueller, Barbara
    Fackler, Oliver T.
    Bartenschlager, Ralf
    Rohr, Karl
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 128 - 136
  • [6] Asbestos Detection with Fluorescence Microscopy Images and Deep Learning
    Cai, Changjie
    Nishimura, Tomoki
    Hwang, Jooyeon
    Hu, Xiao-Ming
    Kuroda, Akio
    SENSORS, 2021, 21 (13)
  • [7] Probabilistic tracking of virus particles in fluorescence microscopy images
    Godinez, W. J.
    Lampe, M.
    Woerz, S.
    Mueller, B.
    Eils, R.
    Rohr, K.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 272 - +
  • [8] DETNET: DEEP NEURAL NETWORK FOR PARTICLE DETECTION IN FLUORESCENCE MICROSCOPY IMAGES
    Wollmann, T.
    Ritter, C.
    Dohrke, J. N.
    Lee, J-Y
    Bartenschlager, R.
    Rohr, K.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 517 - 520
  • [9] NEUROFILAMENT TRACKING BY DETECTION IN FLUORESCENCE MICROSCOPY IMAGES
    Zhu, Junda
    Yuan, Liang
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3123 - 3127
  • [10] A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies
    Cheng, Hui -Jun
    Hsu, Ching-Hsien
    Hung, Che-Lun
    Lin, Chun -Yuan
    BIOMEDICAL JOURNAL, 2022, 45 (03) : 465 - 471