A Family of Modular Area- and Energy-Efficient QRD-Accelerator Architectures

被引:0
|
作者
Vishnoi, Upasna [1 ]
Noll, Tobias G. [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Elect Engn & Comp Syst, Aachen, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
QR-decomposition accelerators are attractive SoC components for many applications with a wide range of specifications. A new family of highly area- and energy-efficient, modular two-way linear-array QRD architectures based on the Givens algorithm and CORDIC rotations is proposed. The template architecture allows for implementations of real-/complex-valued and integer/floating-point QRDs. An accurate algebraic cost model enables cross-level optimization over architecture, micro-architecture and circuit level using a rich set of parameters. Quantitative results for exemplary applications are presented for implementations in 40-nm CMOS, proving the significant improvement of efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Novel Small-Signal Ferroelectric Capacitance-Based Content Addressable Memory for Area- and Energy-Efficient Lifelong Learning
    Xu, Weikai
    Fu, Zhiyuan
    Wang, Kaifeng
    Su, Chang
    Luo, Jin
    Chen, Zerui
    Huang, Qianqian
    Huang, Ru
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (01) : 24 - 27
  • [32] Energy-Efficient Haar Transform Architectures Using Efficient Addition Schemes
    Seidel, Henrique
    da Rosa, Morgana
    Paim, Guilherme
    da Costa, Eduardo
    Almeida, Sergio
    Bampi, Sergio
    2020 IEEE 11TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2020,
  • [33] A Novel Ferroelectric FET Based Universal Content Addressable Memory With Reconfigurability for Area- and Energy-Efficient In-Memory-Searching System
    Xu, Weikai
    Luo, Jin
    Chen, Zerui
    Fu, Boyi
    Fu, Zhiyuan
    Wang, Kaifeng
    Huang, Qianqian
    Huang, Ru
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (07) : 1345 - 1348
  • [34] 2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-/Energy-Efficient Deep Learning
    He, Wangxin
    Yin, Shihui
    Kim, Yulhwa
    Sun, Xiaoyu
    Kim, Jae-Joon
    Yu, Shimeng
    Seo, Jae-Sun
    IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 : 194 - 197
  • [35] ECOLOGICAL PAYBACK TIME OF AN ENERGY-EFFICIENT MODULAR BUILDING
    Faludi, Jeremy
    Lepech, Michael
    JOURNAL OF GREEN BUILDING, 2012, 7 (01): : 100 - 119
  • [36] SHARP: An Adaptable, Energy-Efficient Accelerator for Recurrent Neural Networks
    Aminabadi, Reza Yazdani
    Ruwase, Olatunji
    Zhang, Minjia
    He, Yuxiong
    Arnau, Jose-Maria
    Gonzalez, Antonio
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2023, 22 (02)
  • [37] An Energy-Efficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning
    Shiri, Aidin
    Prakash, Bharat
    Mazumder, Arnab Neelim
    Waytowich, Nicholas R.
    Oates, Tim
    Mohsenin, Tinoosh
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [38] An energy-efficient programmable manycore accelerator for personalized biomedical applications
    Kulkarni A.
    Page A.
    Attaran N.
    Jafari A.
    Malik M.
    Homayoun H.
    Mohsenin T.
    IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26 (01): : 96 - 109
  • [39] An Energy-Efficient Reconfigurable LSTM Accelerator for Natural Language Processing
    Azari, Elham
    Vrudhula, Sarma
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4450 - 4459
  • [40] Runtime Reconfigurable Hardware Accelerator for Energy-Efficient Transposed Convolutions
    Marrazzo, Emanuel
    Spagnolo, Fanny
    Perri, Stefania
    PRIME 2022: 17TH INTERNATIONAL CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2022, : 49 - 52