CODIMENSION 3 HETEROCLINIC BIFURCATIONS WITH ORBIT AND INCLINATION FLIPS IN REVERSIBLE SYSTEMS

被引:9
|
作者
Xu, Yancong [1 ]
Zhu, Deming [2 ]
Geng, Fengjie [3 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou Xiasha 310016, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Heteroclinic bifurcation; orbit flip; inclination flip; reversible system;
D O I
10.1142/S0218127408022652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heteroclinic bifurcations with orbit-flips and inclination-flips are investigated in a four-dimensional reversible system by using the method originally established in [Zhu, 1998; Zhu & Xia, 1998]. The existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic orbit, R-symmetric homoclinic orbit and R-symmetric periodic orbit are obtained. The double R-symmetric homoclinic bifurcation is found, and the continuum of R-symmetric periodic orbits accumulating into a homoclinic orbit is also demonstrated. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding bifurcation diagrams are drawn.
引用
收藏
页码:3689 / 3701
页数:13
相关论文
共 50 条
  • [21] BIFURCATION OF ROUGH HETEROCLINIC LOOP WITH ORBIT FLIPS
    Liu, Xingbo
    Wang, Zhenzhen
    Zhu, Deming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (11):
  • [22] NONRESONANT BIFURCATIONS OF HETEROCLINIC LOOPS WITH ONE INCLINATION FLIP
    Shui, Shuliang
    Li, Jingjing
    Zhang, Xuyang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (01): : 255 - 273
  • [23] The heteroclinic and codimension-4 bifurcations of a triple SD oscillator
    Huang, Xinyi
    Cao, Qingjie
    [J]. NONLINEAR DYNAMICS, 2024, 112 (07) : 5053 - 5075
  • [24] The heteroclinic and codimension-4 bifurcations of a triple SD oscillator
    Xinyi Huang
    Qingjie Cao
    [J]. Nonlinear Dynamics, 2024, 112 : 5053 - 5075
  • [25] HETEROCLINIC ORBIT AND SUBHARMONIC BIFURCATIONS AND CHAOS OF NONLINEAR OSCILLATOR
    张伟
    霍拳忠
    李骊
    [J]. Applied Mathematics and Mechanics(English Edition), 1992, (03) : 217 - 226
  • [26] Bifurcations of a Homoclinic Orbit to Saddle-Center in Reversible Systems
    Qiao, Zhiqin
    Xu, Yancong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [27] Twin Heteroclinic Connections of Reversible Systems
    Kulagin, Nikolay E.
    Lerman, Lev M.
    Trifonov, Konstantin N.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 40 - 64
  • [28] Twin Heteroclinic Connections of Reversible Systems
    Nikolay E. Kulagin
    Lev M. Lerman
    Konstantin N. Trifonov
    [J]. Regular and Chaotic Dynamics, 2024, 29 : 40 - 64
  • [29] CONNECTED SIMPLE SYSTEMS, TRANSITION MATRICES AND HETEROCLINIC BIFURCATIONS
    MCCORD, C
    MISCHAIKOW, K
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) : 397 - 422
  • [30] Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3
    Lamb, JSW
    Teixeira, MA
    Webster, KN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) : 78 - 115