Bifurcations of a Homoclinic Orbit to Saddle-Center in Reversible Systems

被引:0
|
作者
Qiao, Zhiqin [2 ]
Xu, Yancong [1 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] N Univ China, Dept Math, Taiyuan 030051, Peoples R China
关键词
CENTER EQUILIBRIUM;
D O I
10.1155/2012/678252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcations near a primary homoclinic orbit to a saddle-center are investigated in a 4-dimensional reversible system. By establishing a new kind of local moving frame along the primary homoclinic orbit and using the Melnikov functions, the existence and nonexistence of 1-homoclinic orbit and 1-periodic orbit, including symmetric 1-homoclinic orbit and 1-periodic orbit, and their corresponding codimension 1 or codimension 3 surfaces, are obtained.
引用
收藏
页数:12
相关论文
共 50 条