CODIMENSION 3 HETEROCLINIC BIFURCATIONS WITH ORBIT AND INCLINATION FLIPS IN REVERSIBLE SYSTEMS

被引:9
|
作者
Xu, Yancong [1 ]
Zhu, Deming [2 ]
Geng, Fengjie [3 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou Xiasha 310016, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Heteroclinic bifurcation; orbit flip; inclination flip; reversible system;
D O I
10.1142/S0218127408022652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heteroclinic bifurcations with orbit-flips and inclination-flips are investigated in a four-dimensional reversible system by using the method originally established in [Zhu, 1998; Zhu & Xia, 1998]. The existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic orbit, R-symmetric homoclinic orbit and R-symmetric periodic orbit are obtained. The double R-symmetric homoclinic bifurcation is found, and the continuum of R-symmetric periodic orbits accumulating into a homoclinic orbit is also demonstrated. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding bifurcation diagrams are drawn.
引用
收藏
页码:3689 / 3701
页数:13
相关论文
共 50 条
  • [41] ON THE BIFURCATIONS OF SUBHARMONICS IN REVERSIBLE-SYSTEMS
    FURTER, JE
    [J]. LECTURE NOTES IN MATHEMATICS, 1991, 1463 : 167 - 192
  • [42] Codimension two bifurcations of nonlinear systems driven by fuzzy noise
    Hong, L
    Sun, JQ
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (02) : 181 - 189
  • [43] Homoclinic bifurcations in reversible Hamiltonian systems
    Francisco, Gerson
    Fonseca, Andre
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) : 654 - 661
  • [44] Homoclinic snaking near a heteroclinic cycle in reversible systems
    Knobloch, J
    Wagenknecht, T
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (1-2) : 82 - 93
  • [45] Heteroclinic Orbits in Slow–Fast Hamiltonian Systems with Slow Manifold Bifurcations
    Stephen Schecter
    Christos Sourdis
    [J]. Journal of Dynamics and Differential Equations, 2010, 22 : 629 - 655
  • [46] Bifurcations of Sliding Heteroclinic Cycles in Three-Dimensional Filippov Systems
    Huang, Yousu
    Yang, Qigui
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (03):
  • [47] BIFURCATIONS OF TWISTED FINE HETEROCLINIC LOOP FOR HIGH-DIMENSIONAL SYSTEMS
    Jin, Yinlai
    Zhang, Dongmei
    Wang, Ningning
    Zhu, Deming
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2906 - 2921
  • [48] CODIMENSION-THREE BIFURCATIONS OF NONLINEAR VIBRATION-CONTROLLED SYSTEMS
    Tsai, Hsun-Heng
    Tseng, Chyuan-Yow
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (02): : 225 - 246
  • [49] Controllable Hopf bifurcations of codimension 1 and 2 in nonlinear control systems
    Braga, Denis de Carvalho
    Mello, Luis Fernando
    Rocsoreanu, Carmen
    Sterpu, Mihaela
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (09) : 3046 - 3054
  • [50] Harmonic balance analysis of codimension-2 bifurcations in periodic systems
    Piccardi, C
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1996, 43 (12) : 1015 - 1018