On the total detection numbers of complete bipartite graphs

被引:1
|
作者
Escuadro, Henry [1 ]
Fujie, Futaba [2 ]
Musick, Chad E. [2 ]
机构
[1] Juniata Coll, Dept Math, Huntingdon, PA 16652 USA
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Vertex-distinguishing coloring; Detectable labeling; Detection number; Total detection number;
D O I
10.1016/j.disc.2013.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph of size at least 2 and c : E(G) -> {0, 1, . . . , k - 1} an edge labeling of G using k labels, where adjacent edges may be assigned the same label. For each vertex v of G, the color code of v with respect to c is the k-vector code(v) = (a(0), a(1), . . . , a(k-1)), where a(i) is the number of edges incident with v that are labeled i for 0 <= i <= k - 1. The labeling c is called a detectable labeling if distinct vertices in G have distinct color codes. The value val(c) of an edge labeling c of a graph G is the sum of the labels assigned to the edges in G by c. The total detection number td(G) of G is defined by td(G) = min{val(c)}, where the minimum is taken over all detectable labelings c of G. In this paper, we investigate the total detection numbers of complete bipartite graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2908 / 2917
页数:10
相关论文
共 50 条
  • [21] Weak saturation numbers of complete bipartite graphs in the clique
    Kronenberg, Gal
    Martins, Taisa
    Morrison, Natasha
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [22] The total matching polytope of complete bipartite graphs
    Faenza, Yuri
    Ferrarini, Luca
    OPERATIONS RESEARCH LETTERS, 2024, 56
  • [23] Path connectivity of line graphs and total graphs of complete bipartite graphs
    Zhu, Wen-Han
    Hao, Rong-Xia
    Feng, Yan-Quan
    Lee, Jaeun
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [24] The total detection numbers of graphs
    Escuadro, Henry
    Fujie-Okamoto, Futaba
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 97 - 119
  • [25] Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Ming Chen
    Yusheng Li
    Chaoping Pei
    Graphs and Combinatorics, 2018, 34 : 1185 - 1196
  • [26] Matchings in complete bipartite graphs and the r-Lah numbers
    Gábor Nyul
    Gabriella Rácz
    Czechoslovak Mathematical Journal, 2021, 71 : 947 - 959
  • [27] Anti-Ramsey numbers for small complete bipartite graphs
    Axenovich, M
    Jiang, T
    ARS COMBINATORIA, 2004, 73 : 311 - 318
  • [28] MATCHINGS IN COMPLETE BIPARTITE GRAPHS AND THE r-LAH NUMBERS
    Nyul, Gabor
    Racz, Gabriella
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 947 - 959
  • [29] THE TOTAL CHROMATIC NUMBER OF NEARLY COMPLETE BIPARTITE GRAPHS
    HILTON, AJW
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) : 9 - 19
  • [30] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480