On the total detection numbers of complete bipartite graphs

被引:1
|
作者
Escuadro, Henry [1 ]
Fujie, Futaba [2 ]
Musick, Chad E. [2 ]
机构
[1] Juniata Coll, Dept Math, Huntingdon, PA 16652 USA
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Vertex-distinguishing coloring; Detectable labeling; Detection number; Total detection number;
D O I
10.1016/j.disc.2013.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph of size at least 2 and c : E(G) -> {0, 1, . . . , k - 1} an edge labeling of G using k labels, where adjacent edges may be assigned the same label. For each vertex v of G, the color code of v with respect to c is the k-vector code(v) = (a(0), a(1), . . . , a(k-1)), where a(i) is the number of edges incident with v that are labeled i for 0 <= i <= k - 1. The labeling c is called a detectable labeling if distinct vertices in G have distinct color codes. The value val(c) of an edge labeling c of a graph G is the sum of the labels assigned to the edges in G by c. The total detection number td(G) of G is defined by td(G) = min{val(c)}, where the minimum is taken over all detectable labelings c of G. In this paper, we investigate the total detection numbers of complete bipartite graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2908 / 2917
页数:10
相关论文
共 50 条
  • [31] Complete bipartite factorisations by complete bipartite graphs
    Martin, N.
    Discrete Mathematics, 1997, 167-168 : 461 - 480
  • [32] GraPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 276 - +
  • [33] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [34] On graded Betti numbers of edge rings of deficient complete bipartite graphs
    Singh, Pavinder
    Rather, Shahnawaz Ahmad
    Verma, Rohit
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1186 - 1194
  • [35] Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Chen, Ming
    Li, Yusheng
    Pei, Chaoping
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1185 - 1196
  • [36] THE L(2,1)-LABELING ON TOTAL GRAPHS OF COMPLETE BIPARTITE GRAPHS
    Mihai, Gabriela
    MATHEMATICAL REPORTS, 2010, 12 (04): : 351 - 357
  • [37] Gallai and l-uniform Ramsey numbers of complete bipartite graphs
    Liu, Yuchen
    Chen, Yaojun
    DISCRETE APPLIED MATHEMATICS, 2021, 301 : 131 - 139
  • [38] Vertex-magic total labelings of complete bipartite graphs
    Gray, ID
    MacDougall, JA
    Simpson, RJ
    Wallis, WD
    ARS COMBINATORIA, 2003, 69 : 117 - 127
  • [39] The Total Thurston-Bennequin Number of Complete and Complete Bipartite Legendrian Graphs
    O'Donnol, Danielle
    Pavelescu, Elena
    ADVANCES IN THE MATHEMATICAL SCIENCES, 2016, 6 : 117 - 137
  • [40] L(3,1,1)-labeling numbers of square of paths, complete graphs and complete bipartite graphs
    Amanathulla, Sk
    Sahoo, Sankar
    Pal, Madhumangal
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1917 - 1925